

You May Have OpenAPI, But Is It AI-Ready?

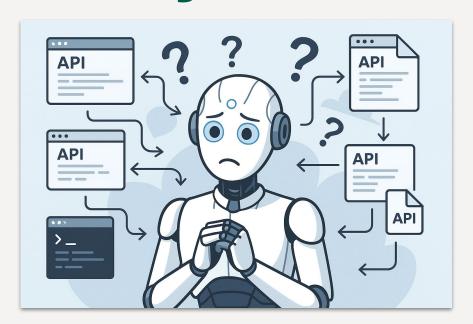
I'm Frank Kilcommins

- > Head of Enterprise Architecture @ Jentic
- > Engineer and Architect (> APIs & Developer Experience)
- > Governance Board member @ OpenAPI Initiative (OAI)
- > Co-Author / Maintainer of the Arazzo Specification

Connect:

@fkilcommins.bsky.social

@frank-kilcommins



frank@jentic.com

Most APIs were designed for Humans

... (most) APIs are intended for developers, but not to be *interpreted*, reasoned about, or safely executed by AI systems

Al Initiatives Have Mixed Success

Aditya Challapally, Chris Pease, Ramesh Raskar, and Pradyumna Chari, "The GenAl Divide: State of Al in Business 2025", MIT NANDA, July 2025

Alex Singla, Alexander Sukharevsky, Lareina Yee, and Michael Chui, "The state of Al in 2025: Agents, innovation, and transformation", McKinsey, November 2025

Al Integration Is the New Moat

Tim O'Reilly "Al Integration Is the New Moat", O'REILLY, Oct 2025 https://www.oreilly.com/radar/integration-is-the-new-moat/

But We Have OpenAPI! Isn't That Enough?

... you can have **valid OpenAPI** that is **semantically useless** to both humans and machines ...

Humans Tolerate, Machines Cannot

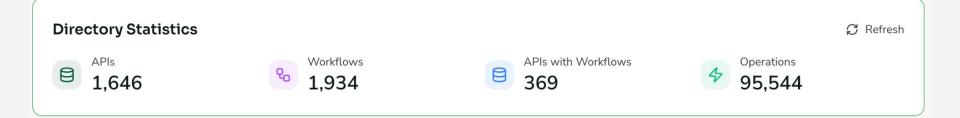
Human Interpretability:

- Vague descriptions
- Inconsistent naming
- Wrong servers
- Missing authentication info
- Missing examples



Humans Tolerate, Machines Cannot

Human Interpretability:


- Vague descriptions
- Inconsistent naming
- Wrong servers
- Missing authentications info
- Missing examples

Machine Interpretability:

What We Learned Across 1500+ Public APIs

See https://github.com/jentic/jentic-public-apis

Findings from 1500+ Public APIs

- Invalid or unparsable OpenAPI Docs
- Missing path parameters / broken \$ref chains
- Invalid examples

- Examples missing
- Inconsistent naming + unclear verb usage
- Vague or generic descriptions

- No servers or wrong envs
- Auth info missing (outside OpenAPI)
- Stale / outdated OpenAPI Documents

Findings from 1500+ Public APIs

Invalid OpenAPI

- Missing path parameters
- broken \$ref chains
- Invalid examples

Security vulnerabilities

- No servers defined
- Wrong environments
- Auth info missing
- Stale or outdated
 OpenAPI Documents

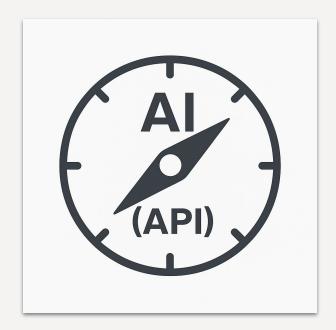
Missing semantics

- Examples missing
- Inconsistent naming
- Unclear verb usage
- Vague or generic descriptions

Typical Example

Agent interpretation:

- It might create a user
- It might *replace* a user
- It might partially update a user
- It might patch only some fields


What Al Systems Actually Need

Agents need APIs to be:

- Interpretable: Intent must be explicit
- Composable: Clear inputs / outputs
- Safe: Auth & safety signals machine readable
- Discoverable: able to find and classify API
- **Predictable**: idempotency, stable responses
- Resilient: Clear signals for success and failure

You Can't Improve What You Can't Measure

Al-readiness starts with understanding your current API landscape

API AI-Readiness Framework

Evaluates APIs across six human & AI-readiness dimensions:

- Foundational Compliance
- Developer Experience (including tooling compatibility)
- Agent Experience (Al-Readiness)
- Agent Usability
- Security
- Al Discoverability

Al-Readiness Scorecard

Foundational Compliance

Evaluates if an API is structurally valid, standards-compliance, and parseable by tooling. The following signals comprise the dimension:

Signal	Description	Normalisation
Spec validity	Checks whether the API parses as a valid OpenAPI	binary
Resolution Completeness	What proportion of \$ref references successfully resolve	coverage
Lint Results	Aggregated quality score from linter diagnostics, weighted by severity.	Inverse weighted categorical
Structural Integrity	Measures whether the API's underlying data model is coherent enough for automated reasoning (semantic or logical defects that impact reliable interpretation)	Logarithmic dampening

Foundational Compliance

Where:

- issues is the total count of structural defects detected.
- structural_issue_threshold represents the point where structural reliability collapses. Once an API has more than ~15 schema-

The formula yields a smooth decay curve, prevents early collapse, but penalises structural issues more heavily than cosmetic issues.

Examples

A structural issue MIIST be recorded when any of the following occur-

	/ Cott dottal di locato illic	JOI DO ICCONACA	willow drift of	the following	occui.
٧.,					
١,					
-					

Category

type: object but no properties defined; objects with additional Properties: false but empty Invalid model shape

breaking or integrity flaws, automated interpretation is no longer trustworthy.

Contradictory typing type: string + format: int32; arrays using incompatible items definitions

minimum > maximum; exclusiveMinimum > exclusiveMaximum; enum values violating type, and Impossible constraints

contradictory schema constructs oneOf / anyOf / allOf inconsistent; missing or invalid discriminator; unreachable or

Broken polymorphism contradictory sub-schemas

Response/request undefined requestBody: {}; missing schemas; empty content definitions

Non-evaluable example Examples that are invalid JSON, violate the declared schema, or contradict field constraints

Unresolvable or circular schema Schemas that reference non-existent fields; recursive references without a valid base schema

structures

rical

Foundational Compliance

Foundational Compliance

Base layer of spec validity and structural soundness.

Grade: B Signals: 4

Specification Validity

Checks whether the API description parses successfully and conforms to its declared specification (e.g., OpenAPI).

80% Lint Results

Aggregated quality score from linter diagnostics, weighted by severity.

100% Resolution Completeness

Percentage of `\$ref` references that resolve successfully.

75% Structural Integrity

Structural correctness score based on schema issues using logarithmic dampening.

Developer Experience

Assesses clarity, documentation quality, example coverage, and compatibility with developer tooling. The following signals comprise the dimension:

Signal	Description	Normalisation
Example Density	Example Density Measures coverage of examples across all eligible specification locations	
Example Validity	Example Validity Checks all examples for Schema Conformance (JSON + XML)	
Doc Clarity	Quantifies linguistic clarity of summaries and descriptions. Basically, how easy is it to understand the intent, and the complexity of verbiage.	Min-max inverted
Response Coverage	Presence of meaningful success and error responses across full surface area	coverage

Developer Experience

Developer Experience & Jentic Compatibility

Clarity, completeness, and ingestion readiness for developers and tooling.

Grade: C-

Signals: 4

8% Example Density

How richly the API is illustrated with examples.

98% Example Validity

Percentage of examples that conform to their schemas.

0% Response Coverage

Percentage of operations that define both success and error responses with realistic examples.

100% Tooling Readiness

Health of API ingestion, bundling, and resolution within Jentic pipelines.

Al-Readiness & Agent Experience

Evaluates where an API gives enough context for AI systems to understand its intent, constraints, and expected behaviours. The following signals comprise the dimension:

Signal	Description	Normalisation
Summary Coverage	Measures presence of concise summaries across eligible locations	coverage
Description Coverage Measures presence of concise descriptions across eligible locations		coverage
Type Specificity	Rewards APIs that model values semantically, not just as loosely typed strings	weighted categorical
Error Standardisation	Favour structured error formats (RFC 9457/7807)	coverage
Operation Identifier Quality	evaluate presence and distinctiveness of operationId values	composite
Policy Presence	Promote inclusion of SLA/rate-limit/policy metadata	coverage
AI Semantic Surface	Bonus uplift for Al-oriented metadata	bonus multiplier

Agent Usability

Assesses how efficiently agents can navigate, combine, and execute API operations. Measures orchestration safety and agent ergonomics. The following signals comprise the dimension:

Signal	Description	Normalisation
Complexity Comfort	Measures document size, endpoint density, and schema complexity, penalised using a logistic curve	logistic shaping
Distinctiveness Quantifies semantic separation between operations		inverse semantic similarity
Navigation (pagination, hypermedia)	Evaluates pagination and hypermedia affordances (HATEOAS, JSON:API, HAL)	composite
Intent Legibility Evaluates verb-object semantic clarity		similarity (LLM assisted)
Safety	Evaluates idempotency & sensitive operation protection	heuristic penalty
Tool Calling Alignment	Represents alignment with LLM tool-calling expectations	coverage

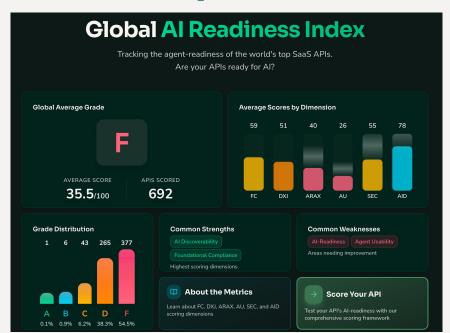
Security

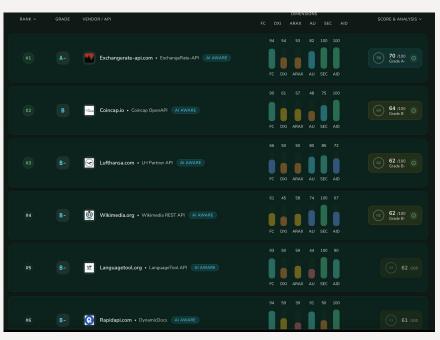
Assesses if your API protects data, enforces access controls, and follows secure-by-design practices. The following signals comprise the dimension:

Signal	Description	Normalisation
Auth Coverage	Evaluates whether authentication is correctly applied to sensitive or modifying operations, using intent-aware heuristics	
Auth Strength	the API using normative scores based on IANA auth-schemes, OAuth2,, OIDC, API Key placement, and mutual TLS Requires HTTPS for externally exposed hosts Detect and penalise hardcoded credentials	
Transport Security		
Secret Hygiene		
Sensitive Handling		
OWASP Posture	Reflect severity-weighted risk findings	severity weighted

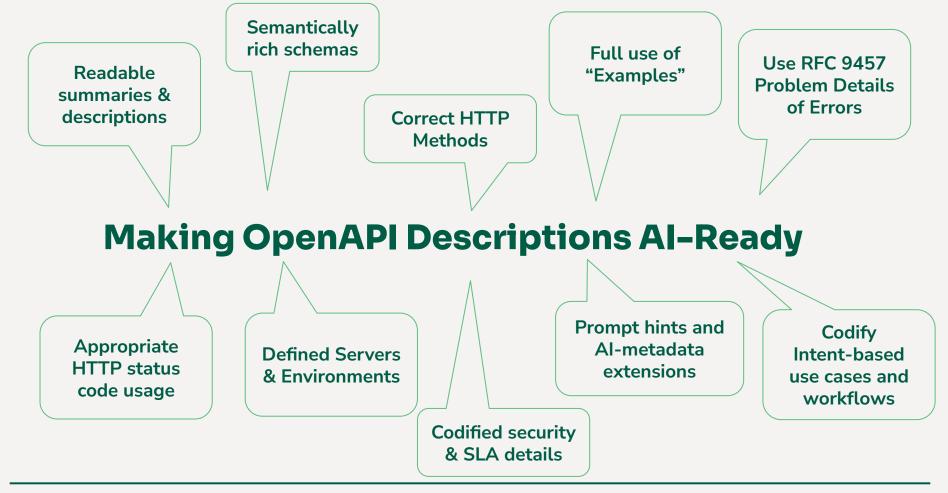
auth_strength = average_strength_of_security_schemes
auth_strength = safe_divide(sum(strength_scores), count(schemes))

Scheme Type	Description	Example	Strength	Rationale
none	No authentication mechanism	no security: block	0.00	Unsafe for sensitive APIs; permitted only when sensitive_ops_expected = 0.
http / basic	Base64 user:pass	scheme: basic	0.10	Plaintext credentials; easily leaked (RFC7617).
http / oauth	OAuth 1.0	scheme: oauth	0.20	Deprecated; insecure signature model (RFC5849).
http / digest	Digest Access Auth	scheme: digest	0.20	Outdated; limited protection (RFC7616).
apiKey (query)	API key in query string	in: query	0.15	Very high leakage risk (logs, proxies, URLs).
apiKey (header/cookie)	API key in header or cookie	in: header	0.50	Moderate security; lacks identity, scoping, or rotation controls.
http / scram-sha-1	SCRAM with SHA-1	scheme: scram-sha-	0.25	Uses deprecated SHA-1 hashing (RFC7804).
SP http / negotiate	Kerberos/NTLM	scheme: negotiate	0.35	Legacy; violates HTTP semantics (RFC4559).
http / bearer (opaque)	Opaque bearer token	scheme: bearer	0.60	Security depends entirely on token distribution (RFC6750).

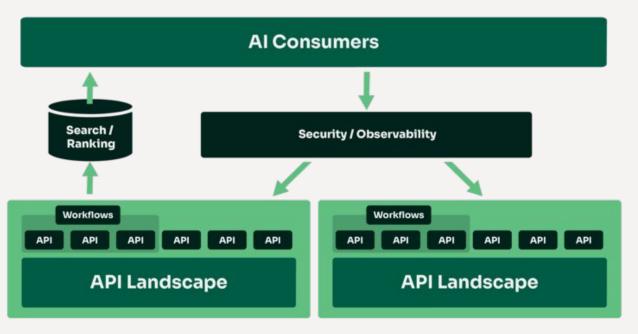

Al Discoverability


Evaluates how easily AI systems can locate, classify, and route to the API across registries, workflows, and knowledge bases. The following signals comprise the dimension:

Signal	Description	Normalisation
Descriptive Richness	· '	
Intent Phrasing	Evaluates verb-object clarity of summaries and descriptions (Similar to Intent_legibility)	
Workflow Context	Evaluates indicators to workflow specifics including Arazzo/MCP/workflow references. Also analyses existence of callbacks etc.	
Registry Signals	Detects metadata related to API gateways, llms.txt, APIs.json, MCP registries, externalDocs links to Dev portals.	
Domain Tagging	Detect domain/taxonomy classification through the use of tags	coverage



Landscape Readiness Overview



Entering the "Context Stage" of APIs

"Endpoints != Use-cases. Think about the workflows" - Adam DuVander

The Future: Machine-First API Design

OpenAPI 3.3:

- Encourage formal semantics (JSON-LD perhaps)
- Improve OAuth / OIDC support
- Improved Header support

Arazzo 2.0:

- gRPC, MCP, GraphQL step support
- Human-in-loop support
- Agent-in-loop support
- Transformer / function support
- Loops

Get your AI-Readiness score: jentic.com/scorecard

Thank you!

Connect:

@fkilcommins.bsky.social

@frank-kilcommins

frank@jentic.com

