
Managing Kubernetes
without losing your cool

Giant Swarm Webinar

May 3rd 2022

Hi 👋,

I’m Marcus Noble, a platform engineer
at

I’m found around the web as
✨AverageMarcus✨ in most places
and @Marcus_Noble_ on Twitter 🐦

~5 years experience running Kubernetes
in production environments.

💖

⃔ We’re hiring

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

#0 - Pay someone else to deal
with it

#1 - Love your terminal

#1 - Love your terminal

★ Bash? ZSH? Fish? - Doesn’t matter as long as you’re comfortable
with it.

★ “rc” files - e.g. .bashrc, .zshrc
These set configuration for each terminal session you open.

★ alias - easily create your own terminal commands

★ Look for “dotfiles” on GitHub - e.g. https://github.com/averagemarcus/dotfiles

https://github.com/averagemarcus/dotfiles

#2 - Learn to love `kubectl`

#2 - Learn to love `kubectl`
★ Add alias k='kubectl' to your

.bashrc / .zshrc / .whateverrc

★ The official docs offer a single
page view of all built in commands:
kubernetes.io/docs/reference/generated/kube
ctl/kubectl-commands

★ kubectl explain is your friend!
Find out what any property of any
Kubernetes resource is for. ➡

k get pods -A

k explain pods.spec.containers
KIND: Pod
VERSION: v1

RESOURCE: containers <[]Object>

DESCRIPTION:
 List of containers belonging to the pod. Containers cannot currently be
 added or removed. There must be at least one container in a Pod. Cannot be
 updated.

 A single application container that you want to run within a pod.

FIELDS:
 args <[]string>
 Arguments to the entrypoint. The docker image's CMD is used if this is not
 provided. Variable references $(VAR_NAME) are expanded using the
 container's environment. If a variable cannot be resolved, the reference in
 the input string will be unchanged. Double $$ are reduced to a single $,
 which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will
 produce the string literal "$(VAR_NAME)". Escaped references will never be
 expanded, regardless of whether the variable exists or not. Cannot be
 updated.

 command <[]string>
 Entrypoint array. Not executed within a shell. The docker image's
 ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME)

⃔ Tip #1 in action

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

#3 - Multiple kubeconfigs

#3 - Multiple kubeconfigs

★ Quick switch between different Kubernetes contexts (clusters) and
between different namespaces.

★ kubectx and kubens
https://github.com/ahmetb/kubectx

★ kubie
https://github.com/sbstp/kubie

★ kubeswitch
https://github.com/danielfoehrKn/kubeswitch ⤴

https://github.com/ahmetb/kubectx
https://github.com/sbstp/kubie
https://github.com/danielfoehrKn/kubeswitch

#4 - k9s

#4 - k9s

github.com/derailed/k9s

https://github.com/derailed/k9s

#5 - kubectl plugins

#5 - kubectl plugins

★ Any command in your $PATH that is prefixed
with kubectl- becomes a kubectl plugin

★ Krew - package manager for kubectl plugins
github.com/kubernetes-sigs/krew

★ Install plugins with:
kubectl krew install <PLUGIN NAME>

★ Some of my fave plugins:
○ stern - Multi-pod/container log tailing
○ tree - Show hierarchy of resources based on ownerReferences
○ outdated - Find containers with outdated images
○ gs - Giant Swarm’s plugin for working with our managed clusters

$ cat kubectl-hello

#!/bin/bash

echo "Hello, Kube"

$ kubectl hello

Hello, Kube

https://github.com/kubernetes-sigs/krew

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

#6 - kshell / kubectl debug

#6 - kshell / kubectl debug

alias kshell='kubectl run \
 -it \
 --image bash \
 --restart Never \
 --rm \
 shell'

Launch a temporary pod running a bash shell for cluster debugging

 ⃔ Need more tools? Replace this with ubuntu

⃔ Tip #1 in action, again

#6 - kshell / kubectl debug

kshell
If you don't see a command prompt, try pressing enter.
bash-5.1# nslookup google.com
Server: 1.1.1.1
Address: 1.1.1.1:53

Non-authoritative answer:
Name: google.com
Address: 142.250.187.206

Launch a temporary pod running a bash shell for cluster debugging

#6 - kshell / kubectl debug

kubectl exec my-broken-pod -it -- sh

/app #

Debugging a running pod - kubectl exec

Note:
★ Needs a shell environment within the container
★ Limited to what’s available in the container (or what you can pull in from the ‘net)
★ Container needs to be running

#6 - kshell / kubectl debug

kubectl exec my-broken-pod -it -- sh
error: Internal error occurred: error executing command in
container: failed to exec in container: failed to start exec……

Debugging a running pod - kubectl exec

��

kubectl debug -it --image bash my-broken-pod
Defaulting debug container name to debugger-gprmk.
If you don't see a command prompt, try pressing enter.
bash-5.1#

Debugging a running pod - kubectl debug

��

⃔ Requires Kubernetes v1.23

#6 - kshell / kubectl debug

kubectl run debug-demo --image=bash -- exit 1

kubectl get pods debug-demo
NAME READY STATUS RESTARTS AGE
debug-demo 0/1 CrashLoopBackOff 2 (20s ago) 44s

kubectl debug -it --image bash debug-demo
Defaulting debug container name to debugger-5mkjj.
If you don't see a command prompt, try pressing enter.
bash-5.1#

Example - investigate a CrashLooping pod

This will prevent us from `kubectl exec` into the pod ⤴

#6 - kshell / kubectl debug
When to use what:

kshell kubectl exec kubectl debug

Multiple workloads experiencing network
issues ✅
Workload not running as expected but not
CrashLooping and isn’t a stripped down
image (e.g. not Scratch / Distroless)

✅
Workload not running as expected but not
CrashLooping and has an image based
on Scratch / Distroless or similar

✅
Workload is CrashLooping ✅

#7 - kube-ssh

#7 - kube-ssh
★ github.com/AverageMarcus/kube-ssh (or github.com/giantswarm/kubectl-enter)

★ Give ssh-like access to a node’s underlying host, great for instances
where nodes are provisioned without SSH or access is blocked.

sh -c "$(curl -sSL https://raw.githubusercontent.com/AverageMarcus/kube-ssh/master/ssh.sh)"
[0] - ip-10-18-21-146.eu-west-1.compute.internal
[1] - ip-10-18-21-234.eu-west-1.compute.internal
[2] - ip-10-18-21-96.eu-west-1.compute.internal
Which node would you like to connect to? 1

If you don't see a command prompt, try pressing enter.
[root@ip-10-18-21-234 ~]#

Please verify any script before you execute it! ⤴

Why? - I prefer to use ephemeral instances with the minimal needed to run Kubernetes, no sshd, no port 22 open
etc. but there are times when you just need to check what’s actually going on with the underlying host machine.

https://github.com/AverageMarcus/kube-ssh
https://github.com/giantswarm/kubectl-enter

#7 - kube-ssh
How it works

kubectl run kube-ssh --restart=Never -it --rm --image overridden
--overrides '
{
 "spec": {
 "hostPID": true,
 "hostNetwork": true,
 '"${NODE_SELECTOR}"'
 "tolerations": [{ "operator": "Exists" }],
 "containers": [
 {
 "name": "kube-ssh",
 "image": "averagemarcus/kube-ssh:latest",
 "stdin": true,
 "tty": true,
 "securityContext": { "privileged": true }
 }
]
 }
}' --attach "$@"

 ⃔Container image containing `nsenter`

 ⃔Ensure we can run on any node

 ⃔Allows us to switch to a host PID

FROM debian:buster as builder

WORKDIR /tmp
RUN apt-get update && \
 apt-get install -yq \
 make gcc gettext autopoint \
 bison libtool automake pkg-config

ADD https://github.com/karelzak/util-linux/archive/v2.34.tar.gz .
RUN tar -xf v2.34.tar.gz && \
 mv util-linux-2.34 util-linux \
 cd util-linux && \
 ./autogen.sh && \
 ./configure && \
 make LDFLAGS="--static" nsenter

FROM scratch
COPY --from=builder /tmp/util-linux/nsenter /
ENTRYPOINT [
 "/nsenter", "--all", "--target=1", "--", "su", "-"
]

ssh.sh Dockerfile

★ Some caveats - underlying host needs a shell

★ You require enough permissions to launch pods with privileged
securityContext - RBAC, PSPs and Admission Controllers could all
potentially block this. (This could also be considered a benefit to this approach over
traditional SSH)

★ Not a real SSH session - so no key authentication, file transfer, port
forwarding

★ nsenter - “The nsenter command executes program in the namespace(s) that
are specified in the command-line options.” (Man page)

#7 - kube-ssh
⃔ This won’t work with Talos, for example

https://man7.org/linux/man-pages/man1/nsenter.1.html

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

✅

#8 - Webhooks

★ Two types of webhooks:

★ Implement more advanced access control than is possible with RBAC.
[Restricting cluster-admin permissions]

★ Add default labels to resources as they’re created.
★ Enforce policies such as not using latest as an image tag or

ensuring all workloads have resource requests/limits specified.
★ “Hotfix” for security issues (e.g. mutating all pods to include a

LOG4J_FORMAT_MSG_NO_LOOKUPS env var to prevent Log4Shell
exploit). [Log4Shell Mitigation]

#8 - Webhooks
⃔ OK, actually 3 but we’re ignoring CRD conversion webhooks

ValidatingWebhook Ability to block actions against the API server if fails to meet
given criteria.

MutatingWebhook Modify requests before passing them on to the API server.

https://www.giantswarm.io/blog/restricting-cluster-admin-permissions
https://kyverno.io/policies/other/mitigate_log4shell/mitigate_log4shell/

★ Build your own operator to implement
custom logic

★ Kyverno - Kubernetes native policy
management. Create Policy and
ClusterPolicy resources to define
rules in YAML

★ OPA Gatekeeper - Policy management
built on top of Open Policy Agent

#8 - Webhooks

Kyverno Policy
apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
 name: block-bulk-certconfigs-delete
 annotations:
 policies.kyverno.io/description: Block delete all bug in CLI
spec:
 rules:
 - name: block-bulk-certconfigs-delete
 match:
 any:
 - resources:
 kinds: [CertConfig]
 preconditions:
 any:
 - key: ""
 operator: Equals
 value: ""
 validate:
 message: |
 Your current kubectl-gs version contains a critical bug
 deny:
 conditions:
 - key: ""
 operator: In
 value: [DELETE]

Taken from our Restricting cluster-admin permissions blog post ⤴

https://kyverno.io/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://www.giantswarm.io/blog/restricting-cluster-admin-permissions

Notes:
★ Where possible always avoid applying webhooks to resources in

kube-system. This can cause a deadlock if those pods try to come up
before the webhook service is available.

★ Be aware of the failurePolicy property - it defaults to “fail” which
can cause troubles if your service handling the webhook goes down.

★ The reinvocationPolicy property can be set if changes made by a
MutatingWebhook may need to go through other defined webhooks
again.

★ Ordering - first MutatingWebhooks then ValidatingWebhooks. No
guaranteed control of order within these two phases.

#8 - Webhooks
⃔ This is one of the main causes we see of clusters being down

#9 - Kubernetes API

All Kubernetes operations are done via the API - kubectl uses it, in-cluster
controllers use it, the scheduler uses it and you can use it too! ✨

The API can also be extended by either:
● the creation of Custom Resource Definitions (CRDs)
● implementing an Aggregation Layer (such as what metrics-server implements).

#9 - Kubernetes API

We’re not going to cover this today ⤴

You can easily try out the API using kubectl with the --raw argument.

If no host is provided kubectl will use the API of the current context.

#9 - Kubernetes API

kubectl get --raw /api/v1/namespaces/default/pods
{"kind":"PodList","apiVersion":"v1","metadata":{"selfLink":...

HTTP Method Kubectl command

GET kubectl get --raw

POST kubectl create --raw

DELETE kubectl delete --raw

PUT kubectl replace --raw

This is the equivalent to `kubectl get pods -n default`
⤵

Not sure what APIs are available?

API endpoint format:

/{API_VERSION}/namespace/{NAMESPACE_NAME}/{RESOURCE_KIND}/{NAME}

#9 - Kubernetes API

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
deployments deploy apps/v1 true Deployment

From the “Name” column above
⤵

Optional name of the specific resource ⤴

Only if namespaced column is ‘true’ ⤴

Not sure what APIs are available?

If APIVERSION is just v1 the endpoint starts with /api/v1/

E.g. /api/v1/componentstatuses

#9 - Kubernetes API

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
deployments deploy apps/v1 true DeploymentThis is the “core” API ⤴

Not sure what APIs are available?

Otherwise, the endpoint starts with /apis/{APIVERSION}/

E.g. /apis/apps/v1/

#9 - Kubernetes API

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
deployments deploy apps/v1 true Deployment

Note the extra ‘s’ ⤴

Not sure what APIs are available?

The NAMESPACED column indicates if the resource is bound to a
namespace.

If false: /api/v1/componentstatuses
If true: /apis/apps/v1/namespaces/default/deployment

#9 - Kubernetes API

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
deployments deploy apps/v1 true Deployment

⃔Name of the namespace to use

Omit this to search all namespaces ⤴

#9 - Kubernetes API
Resources:

- kubernetes/client-go - the official Golang module for interacting with
the Kubernetes API

- Kubernetes Provider for Terraform (actually uses the above Go module under the hood)
- kubernetes-client org on GitHub has many official clients in different

languages

Where is this useful?

★ Building our own CLI / desktop tooling (e.g. k9s, Lens).

★ Cluster automation - resources managed by CI, CronJobs, etc.

★ Building our own operators to extend Kubernetes.

https://github.com/kubernetes/client-go
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://github.com/kubernetes-client

#10 - CRDs & Operators

Extend Kubernetes’ built-in API and functionality with your own Custom
Resource Definitions (CRDs) and business logic (operators).

#10 - CRDs & Operators

Image credits: Container Solutions
https://blog.container-solutions.com/kubernetes-operators-explained

https://blog.container-solutions.com/kubernetes-operators-explained

#10 - CRDs & Operators

Metacontroller
Frameworks

References
● https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
● https://blog.container-solutions.com/kubernetes-operators-explained
● https://operatorhub.io/ - Directory of existing operators

Videos

https://kubebuilder.io/
https://operatorframework.io/
https://kudo.dev/
https://metacontroller.github.io/metacontroller/intro.html
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://blog.container-solutions.com/kubernetes-operators-explained
https://operatorhub.io/
https://www.youtube.com/watch?v=LLVoyXjYlYM
https://www.youtube.com/watch?v=KBTXBUVNF2I
https://www.youtube.com/watch?v=8JFRw9dZU_s

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

✅

✅

Recap

#1 - Love your terminal

#2 - Learn to love kubectl

#3 - Multiple kubeconfigs

#4 - k9s

#5 - Kubectl plugins

#6 - kshell / kubectl debug

#7 - kube-ssh

#8 - Webhooks

#9 - Kubernetes API

#10 - CRDs & Controllers

Thank You
🧡

