
Aesthetics and Narrative:

Programming What Cannot Be
Programmed

Clojure/conj 2016

 @dschmudde

 http ://schmud.de

Functional Programming

Reason About Code

 Finance (Quantitative)

 Data (Quantitative)

Quantitative Reasoning

Soft: Cogitating

Behavior

Improvements

Hard: Mathematically Provable

Correctness

Performance

Functional Programming

Long History in Abstract Domains

 Aesthetics

 Story

Art

Artist: Mostly Qualitative

 Chaos and Surrender

 Decisiveness and Agency

The Decisive Artist

Know the Rules Before You Can
Break Them

The Decisive Programmer

Know the Rules Before You Can
Write Them

We Don't Always Know the Rules

AARON

Development: 1968 - 21st Century

Fortran →

C →

Lisp (CLOS)

1983

1992

 Color

Composing a Small Number of
Primitives

Programming Autonomy

Aesthetic Choices

Harold Cohen
(1 May 1928 – 27 April 2016)

Paintings by AARON
(1968 - ?)

Zork

Development: 1975 - 1982

Fortran (Adventure) →

MDL (PDP-10) →

ZIL (Z-Machine running Zork I-III)

1975

Colossal Cave Adventure

Verb-Noun Commands

go west

1977

Zork

Prepositions and Conjunctions

Direct and Indirect Objects

fill the bottle with water

MDL

<DEFINE AXE-FUNCTION ()
 <COND (<VERB? "TAKE">
 <TELL "The troll's axe seems white-hot.
 You can't hold on to it.">
 T)>>

ZIL

<OBJECT LANTERN
 (LOC LIVING-ROOM)
 (SYNONYM LAMP LANTERN LIGHT)
 (ADJECTIVE BRASS)
 (DESC "brass lantern")
 (FLAGS TAKEBIT LIGHTBIT)
 (ACTION LANTERN-F)
 (FDESC "A battery-powered lantern is on the
 trophy case.")
 (LDESC "There is a brass lantern
 (battery-powered) here.")
 (SIZE 15)>

 Parsing and Language

Small Number of Primitives

Autonomy

Narrative Guide

Natural Language

Qualitative Reasoning

 Unknown Quantities

 Exploration of the Idea

Exploration

Agent Autonomy

→ Intelligence?

→ Creativity?

 Making a Movie

Film Script:

A Technical Document

Clarity and precision for interpretation:

Production breakdowns

Camera shooting scripts

Direction for actors and directors

Basis for novelizations

blueprint ≠ bridge

code ≠ execution

script ≠ film

Script

Pure Narrative

Film

Result of Autonomous Agents Making
Aesthetic Choices

Creating Agency

Pure Functions

Composition

Borderless

 Kinect

 Overtone

Abstract Domain

Transducers

→ Input

personEntered

personUpdated

personWillLeave

→ Input

0: pid;

1: oid;

2: age;

3: centroid.x;

4: centroid.y;

5: velocity.x;

6: velocity.y;

7: depth;

8: boundingRect.x;

→ Input

9: boundingRect.y;

10: boundingRect.width;

11: boundingRect.height;

12: highest.x

13: highest.y

14: haarRect.x; - will be 0 if hasHaar == false

15: haarRect.y; - will be 0 if hasHaar == false

16: haarRect.width; - will be 0 if hasHaar == false
…

Output →
vca (loudness)

reverb (timbre)

vco (pitch)

attack (timbre)

sustain (timbre)

release (timbre)

gate (loudness)

silence (loudness)

A/V Flow

→

Input: Kinect Vision

Δ

Internally: Clojure: Operate on Primitives

→

Output: Overtone Sound

Δ Operations

osc/person-enter ∈

@person-sound{id-1 "vowel-1" id-2 "vowel-2" ...}

(osc/person-updated '(id age))

∃ @person-sound{id ...}

× (vowel (map #(* age %) [amp verb osc])

Complexity

(definst drone-ae-sus
 "I make the 'ae' vowel sound at a given frequency.
 I start/stop with the gate set to 1 or 0."
 [freq 100
 gate (synth-defaults ::gate)
 amp (synth-defaults ::vca)
 verb (synth-defaults ::reverb)
 kr-mul (synth-defaults ::vco)]

 (let [kr-mul (:value kr-mul)
 eq-freq [270 2290 3010]
 hpf-rlpf [600 8000 0.6]
 q 0.1
 synth-unit (synth-unit-layered freq
 eq-freq q kr-mul)]

 (synth-filter-chain synth-unit amp verb gate hpf-rlpf)))

Art

Qualitative Reasoning

Know The Rules Before You Can
Break Them

Constraints Breed Creativity

Trust Your Instinct

(REPL is God)

spec

Scientific Constraints

(s/def ::frequency (s/and number?
 #((control-range 20 20000) %)))

spec

Aesthetic Constraints

(s/def ::vca (s/and number?
 #((control-range 0.4 1) %)))

(s/def ::reverb (s/and integer?
 #((control-range 0 1000) %)))

(s/def ::vco (s/and integer?
 #((control-range 0 25) %)))

Autonomous Decision Making

testable experiment-able with spec

Autonomous Decision Making

Designing its own timbre over long
periods of uptime

Autonomy

&

Authorship

 Objectivity

 Subjectivity

Art

Aesthetics and Narrative:

Programming What Cannot Can
Be Programmed

 @dschmudde

 http ://schmud.de

 Licensed under a Creative Commons license.

https://creativecommons.org/licenses/by-nc-nd/4.0/

