
GraphQL, REST or RPC?
Making the choice!

Rob Allen
PHPUK, February 2023

As much an API integrator as an API developer.

Fit for Purpose

Rob Allen @akrabat @rob@akrabat.com

If there's one phrase that sums up a good API, it's Fit For Purpose.

Fundamentally, the API has to do its job and achieve it's business requirements.

We're interested what that takes in terms of our choice of architecture and developer experience.

Today we're going to look at the different architectural API styles, understand how they work

and what their strengths and weaknesses are.

API Architecture

Rob Allen @akrabat @rob@akrabat.com

We can break API architecture into three: GraphQL, RESTful & RPC style

All have pros and cons and which one you pick depends on what balance of features and requirements

works best for your situation

We'll look at each in three, how they work and then look at the pros and cons

APIs can be realised in any style
but, which makes the most sense?

Rob Allen @akrabat @rob@akrabat.com

The short answer is It depends!

Which properties are the ones you care about, so let's dive in

RPC APIs

Rob Allen @akrabat @rob@akrabat.com

RPC APIs
• Call a function on a remote server

Rob Allen @akrabat @rob@akrabat.com

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC

Rob Allen @akrabat @rob@akrabat.com

JSON-RPC can be hand-built, SOAP and gRPC not so much.

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC

• Tends to require a schema (WSDL, ProtoBuf Defintion)

Rob Allen @akrabat @rob@akrabat.com

You need the schema to work out function names and parameters.

Ethereum JSON-RPC
Request:
 POST / HTTP/1.1
 Host: localhost:8545

 {
 "jsonrpc":"2.0",
 "id":1,
 "method":"net_peerCount",
 "params":[]
 }

Rob Allen @akrabat @rob@akrabat.com

Note that this is RPC, so we POST to / with a body that has the info

In this case, we pass method with no parameters

Yes, it's just like a function call

Ethereum JSON-RPC
Response:
 {
 "id":1,
 "jsonrpc": "2.0",
 "result": "0x2"
 }

Rob Allen @akrabat @rob@akrabat.com

Response is simple JSON, with the result of our function call helpfully in the 'result

gRPC
Interact via PHP library:

$client = new RouteGuideClient('localhost:50051');

$p = new Routeguide\Point();
$p->setLatitude(409146138);
$p->setLongitude(-746188906);
list($feature, $status) = $client->GetFeature($p)->wait();

Rob Allen @akrabat @rob@akrabat.com

gRPC is highly typed binary protocol created by Google

Uses code generation to create client/server applications - multi-language

gRPC is very efficient (HTTP/2, binary protocol, duplex streaming)

Though that there's no browser support, no url end points and steep learning curve

IMO, Better used for internal APIs (IMO don't force this tech on anyone else!)

RESTful APIs

Rob Allen @akrabat @rob@akrabat.com

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

Rob Allen @akrabat @rob@akrabat.com

GET, POST, DELETE, PUT, PATCH

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

Rob Allen @akrabat @rob@akrabat.com

HTTP verbs for operations, Headers control content formats

Status codes have meaning, Layered system

HTTP caching is implicit

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

• Uniform interface

Rob Allen @akrabat @rob@akrabat.com

Predictable endpoints

Predictable operations

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

• Uniform interface

• Hypermedia controls

Rob Allen @akrabat @rob@akrabat.com

Links for state transitions (what to do next)

Links for related resources

(Great for discoverability)

RESTful APIs
PUT /users/ba60c99fd3
Content-Type: application/json
Accept: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen @akrabat @rob@akrabat.com

This is a typical HTTP request to a REST API

NEXT SLIDE IS A BREAKDOWN OF THE CODE

RESTful APIs
PUT /users/ba60c99fd3
Content-Type: application/json
Accept: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen @akrabat @rob@akrabat.com

Method matters. This is a PUT request, so we already know the full URI to this resourcecd and

are either creating or updating it.

RESTful APIs
PUT /users/ba60c99fd3
Content-Type: application/json
Accept: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen @akrabat @rob@akrabat.com

PUT requires a body and we should supply every property of the resource

We also supply the Content-Type header to tell the server how to interpret our body data.

RESTful APIs
PUT /users/ba60c99fd3
Content-Type: application/json
Accept: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen @akrabat @rob@akrabat.com

Finally, we tell the server which formats we can decode if it sends data to us.

RESTful APIs: Response
HTTP/1.1 201 Created
Content-Type: application/hal+json
ETag: dfb9f2ab35fe4d17bde2fb2b1cee88c1

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com",
 "_links": {
 "self": "https://api.example.com/user/ba60c99fd3"
 }
}

Rob Allen @akrabat @rob@akrabat.com

and this is the response from the server.

NEXT SLIDE IS A BREAKDOWN OF THE CODE

RESTful APIs
HTTP/1.1 201 Created
Content-Type: application/hal+json
ETag: dfb9f2ab35fe4d17bde2fb2b1cee88c1

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com",
 "_links": {
 "self": "https://api.example.com/user/ba60c99fd3"
 }
}

Rob Allen @akrabat @rob@akrabat.com

Status code matters as we're native HTTP

2xx means that we're successful

201 means that we created the resource

RESTful APIs
HTTP/1.1 201 Created
Content-Type: application/hal+json
ETag: dfb9f2ab35fe4d17bde2fb2b1cee88c1

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com",
 "_links": {
 "self": "https://api.example.com/user/ba60c99fd3"
 }
}

Rob Allen @akrabat @rob@akrabat.com

The server has sent back a representation of the resource that it has created.

Content-Type tells us how to decode it. This is HAL, which is quite a simple format that allows us

to interpret _links property

In this case, self is the canonical URI to this resource

RESTful APIs
HTTP/1.1 201 Created
Content-Type: application/hal+json
ETag: dfb9f2ab35fe4d17bde2fb2b1cee88c1

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com",
 "_links": {
 "self": "https://api.example.com/user/ba60c99fd3"
 }
}

Rob Allen @akrabat @rob@akrabat.com

ETag allows us to detect edit clashes and use HTTP caching. It's the ID of this particular version of this resource

Means we can use If-Match headers to detect mid-air edit collisions as we'll get back a

412 (Precondition Failed) status if someone else edits the resource before we do our update.

We can also use If-None-Match header to cache unchanged resources as we'll get back a

304 (Not Modified) status, saving time and network resources if our cached copy is still fresh.

This is all about HTTP standard. It's all about describing what is going on using the semantics that are common to all resources and components

GraphQL APIs

Rob Allen @akrabat @rob@akrabat.com

GraphQL APIs
• Retrieve only the data you need on consumer side

Rob Allen @akrabat @rob@akrabat.com

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

Rob Allen @akrabat @rob@akrabat.com

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

• Self-describing schema

Rob Allen @akrabat @rob@akrabat.com

GraphQL comes with a full ecosystem which ease both API provider and consumer job.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Reading and writing actions are separated in 2 sets: queries & mutations

Knowing how one works, doesn't mean you know how the other works.

You can query the schema for information on how to read

You have to read the docs to find out the mutation function names

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Query's are wrappen in a query block

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

We are query for an author record with a name of Anne Macffrey

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

We list the properties of the author that we want returned.

ID and name in this case and we won't get anything else.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

We can also query for a sub-resource at the same time. In this case books written by Ann

We just want the first 5 though. it's quite common for their to be some limitations on

how many items you can return in the query. If you want all, then you probably need do to pagination.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Again, we specify the properties we want for the collection set.

Note: not each item, the set itself, so we want to know how many books McCaffery's written.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Now we define each book in the collection. Here's where the Graph in GraphQL becomes visible!

node is the book itself, so we specify the book properties we want at that level

id & title in this case so that everything fits on the slides.

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

This is the returned result

NEXT SLIDE IS A BREAKDOWN OF THE CODE

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

The data comes back shaped as we specified wrapped in a section named data

Firstly, the author's properties that we asked for - id and name.

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

Now our books collection with its totalCount property

Our API only knows about 6 Anne McCaffery books, when she wrote 17 books in the Dragonriders of Pern series alone!

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

Now we get each book as a node in our edges array.

Again, we only get back the properties we asked for.

The list of edges continues off the slide.

Mutations
mutation {
 createAuthor(
 name: "Mary Shelley", dateOfBirth: "1797-08-30"
) {
 returning {
 id, name
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Mutations allow us to create, update and delete data

NEXT SLIDE IS A BREAKDOWN OF THE CODE

Mutations
mutation {
 createAuthor(
 name: "Mary Shelley", dateOfBirth: "1797-08-30"
) {
 returning {
 id, name
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Rather than the query grouping for reading, we wrap our request in

a mutation group.

Mutations
mutation {
 createAuthor(
 name: "Mary Shelley", dateOfBirth: "1797-08-30"
) {
 returning {
 id, name
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

The mutation function name needs to be found from the docs. For this API

it's createAuthor.

We specify the properties we want to set within the function call

Mutations
mutation {
 createAuthor(
 name: "Mary Shelley", dateOfBirth: "1797-08-30"
) {
 returning {
 id, name
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

and then we specify the data that we want returned.

The API doesn't default to anything.

Mutations: Response
Response:
"data": {
 "createAuthor": {
 "returning": [
 {
 "id": "e3388cbea4e840a",
 "name": "Mary Shelly",
 }
]
 }
}

Rob Allen @akrabat @rob@akrabat.com

As you'd expect, the result is wrapped in a data group as with queries

and the shape of the data matches the format of our mutation query

with just the properties that we asked for returned.

Which to pick?

Rob Allen @akrabat @rob@akrabat.com

So.. which should you pick?

I can't make that decision for you.

I'm generally a pragmatist, so here's some thoughts to help

Lamborghini or Ferrari?
Rob Allen @akrabat @rob@akrabat.com

Lamborghini or Ferrari? This is a preference

Totally valid to create the one you prefer to write! It will be better

No one looks forward to writing a SOAP API!

Lamborghini or Truck?
Rob Allen @akrabat @rob@akrabat.com

Lamborghini or Pickup Truck?

This depends on what you are optimising for

There are some important differences between these API styles that may matter to you.

Let's look at them

Considerations
• What is it to be used for?

• Response customisation requirements

• HTTP interoperability requirements

Rob Allen @akrabat @rob@akrabat.com

API Uses
• Do you control both server and client?

• How many users are expected?

• What is the skill level of your integrators?

Rob Allen @akrabat @rob@akrabat.com

Talk though each bullet point

Response customisation
• GraphQL is a query-first language

• REST tends towards less customisation

• With RPC you get what you're given!

(None will fix your database layer's ability to efficiently retreive the data requested!)

Rob Allen @akrabat @rob@akrabat.com

GraphQL: Choose your fields & nested-resources

REST: HATEOAS prefers separate endpoints for sub-resources (through HTTP/2!)

REST: usea DSL such as JSON-API for customisation

HTTP/2 can send multiple requests for data in parallel over one TCP connection

RPC: You're calling a function!

Performance
• REST and RPC puts server performance first

• GraphQL puts client performance first

Rob Allen @akrabat @rob@akrabat.com

REST tenent of Client-server autonomy means that client doesn't know business logic

GraphQL encourages client business logic

Caching
• GraphQL and RPC can only cache at application layer

• REST can additionally cache at HTTP layer

Rob Allen @akrabat @rob@akrabat.com

Data Transfer
GraphQL: RPC:

 query {
 avatar(userId: "1234")
 }

 {
 "data": {
 "avatar": "(base64 data)"
 "format": "image/jpeg"
 }
 }}

 POST /api
 {
 "method": "getAvatar",
 "userId": "1234"
 }

 {
 "result": "(base64 data)"
 }

Rob Allen @akrabat @rob@akrabat.com

Data Transfer
REST: REST:

 GET /user/1234/avatar
 Accept: image/jpeg

 HTTP/1.1 200 OK
 {jpg image data}

 GET /user/1234/avatar
 Accept: application/json

 HTTP/1.1 200 OK
 {"data": "(base64 data)"}

Rob Allen @akrabat @rob@akrabat.com

GraphQL & RPC can send field data backwards and forwards

Only REST can also send and receive other types of data

Versioning
• RPC, GraphQL and REST can all version via evolution as easily

as each other

Rob Allen @akrabat @rob@akrabat.com

Don't let anyone tell you graphql doesn't need versions! Shopify ended up using versions.

Design of a schema that doesn't break BC in the future is very very hard though!

In all types of APIs

Versioning
• RPC, GraphQL and REST can all version via evolution as easily

as each other

• GraphQL is very good for deprecation of specific fields

Rob Allen @akrabat @rob@akrabat.com

You can monitor if anyone is using it and reach out directly.

Design considerations

It's always hard!

Rob Allen @akrabat @rob@akrabat.com

GraphQL: need to control naming and also choose what can be nested.

Need to balance DX of API vs internal app capabilities

Easy for a query to accidentally DOS you (Talk about complexity)

Design considerations

It's always hard!

Rob Allen @akrabat @rob@akrabat.com

REST: need to balance data sent vs number of requests

Easy to end up with clients needing to make too many calls

REST Uniform inerface encourages consistency and easier learning curve

It's your choice

Rob Allen @akrabat @rob@akrabat.com

in REST, the structure of the request object is defined on the server. In GraphQL, you define the object on the client.

A big part of the purpose of GraphQL is to eliminate the multiple round-trips. If that's not a pain point for you, maybe it's not necessary.

GraphQL vs REST is like comparing SQL with noSQL

I like them both & would be happy with a well designed one over a hard-to-use other

So, let's talk about that

Developer Experience

Rob Allen @akrabat @rob@akrabat.com

No matter which API style you pick, if the DX is bad, then the API is not fit fo purpose

Correctness

Rob Allen @akrabat @rob@akrabat.com

Correctness
RPC: Functions!

Rob Allen @akrabat @rob@akrabat.com

An RPC API is a remote function call. Make it work like that

Correctness
RPC: Functions!
REST: HTTP matters!

Rob Allen @akrabat @rob@akrabat.com

Uniform interface design of URIs

Correct use of HTTP verbs

Status codes matter

Correct use of media types: Content-Type, Accept allows forward evolution

Use Hypermedia for exploration API & decoupling client from server

Use caching headers

Correctness
RPC: Functions!
REST: HTTP matters!
GraphQL: Think in terms of relationships!

Rob Allen @akrabat @rob@akrabat.com

Think in Graphs!

Define your schema in terms of nodes and relationships

Define types correctly

Use conventions for naming fields and filters

Think about how far to allow nesting

Use Relay project specification for pagination & Global Object identification

Correctness
RPC: Functions!
REST: HTTP matters!
GraphQL: Think in terms of relationships!

Rob Allen @akrabat @rob@akrabat.com

IN ALL CASES:

Naming things is hard - be consistent

Take time to design relationships

Take time to get collections vs scalars right as harder to change later

Errors

Rob Allen @akrabat @rob@akrabat.com

Error representations must be first class citizens

Remember that humans read the errors

REST Errors
HTTP/1.1 503 Service Unavailable
Content-Type: application/problem+json
Content-Language: en

{
 "status": 503,
 "type": "https://example.com/service-unavailable",
 "title": "Could not authorise user.”,
 "detail": "Auth service is down for maintenance.”,
 "instance": “https://example.com/maintenance/2023-02-15",
 "error_code": "AUTHSERVICE_UNAVAILABLE"
}

Rob Allen @akrabat @rob@akrabat.com

HTTP Status codes: 4xx and 5xx

Human readable error messages

Error code for computers

For REST, if you don't have an error representation in your schema, use RFC 7807

GraphQL Errors
• Always returns 200, unless infrastructure failure

• Common to see cryptic messages from GraphQL service

• Top level 'errors' key for exceptional scenarios

• Domain errors should be within the schema

• Consider using an error type per node and a union:
union CreateUserResult = UserCreated | UserCreationErrors

Rob Allen @akrabat @rob@akrabat.com

It's common to see a GraphQL software to do the integration work. This has its own errors that need learning.

GraphQL separates system errors from detail errors.

Top level 'errors' for general errors: too complex, service down, syntax errors, rate limited, etc

Domain errors in schema: error fields are defined within schema definition

Note that the user may need to select them to see them!!

Not uncommon for different formats in different places in API

Don't do this. Use error types per node to avoid adhoc generic error fields that are hard to deal with

Documentation

Rob Allen @akrabat @rob@akrabat.com

Nobody reads the documentation until they need to!

I want to touch on documentation as this will make or break adoption

API Reference
• GraphQL: Built-in introspection

• REST: OpenAPI Specification

Both allow generation of a API reference website.

Rob Allen @akrabat @rob@akrabat.com

GraphQL API comes with an integrated documentation system describing the schema. You can discover the available queries and mutations and the available types.

A RESTful API should come with an OpenAPI specification. You can discover the available endpoints, operations and the data returned.

Tutorials
The API Reference is the what, the tutorials are the how and why

Rob Allen @akrabat @rob@akrabat.com

Developers will need information on authentication and how to use your API

Also lots of samples of how to perform common tasks

Look at Stripe or GitHub for inspiration

With GraphQL, also info on complexity limits can be helpful

GitHub GraphQL

Rob Allen @akrabat @rob@akrabat.com

GitHub REST

Rob Allen @akrabat @rob@akrabat.com

To sum up

Rob Allen @akrabat @rob@akrabat.com

We've looked at RPC, GraphQL & REST APIs

Pick the one that best fits what you're trying to do

If you're not sure, then go with HTTP REST. There's likely to be less surprises.

If you suck at providing a REST API,
you will suck at providing a GraphQL API

Arnaud Lauret, API Handyman

Rob Allen @akrabat @rob@akrabat.com

The API style doesn't really matter. What matters is your design

Your second attempt will be better than your first

GraphQL designs tend to build in the lessons from the last RESTful API

Thank you!

Rob Allen @akrabat @rob@akrabat.com

Photo credits
- Architecture: https://www.flickr.com/photos/shawnstilwell/4335732627
- Choose Pill: https://www.flickr.com/photos/eclib/4905907267
- Lamborghini & Ferrari: https://akrab.at/3w0yFmg
- Lamborghini & Truck: https://akrab.at/3F4kAZk
- '50s Computer: https://www.flickr.com/photos/9479603@N02/49755349401
- Blackboard: https://www.flickr.com/photos/bryanalexander/17182506391
- Crash Test: https://www.flickr.com/photos/astrablog/4133302216

Rob Allen @akrabat @rob@akrabat.com

https://www.flickr.com/photos/shawnstilwell/4335732627
https://www.flickr.com/photos/eclib/4905907267
https://akrab.at/3w0yFmg
https://akrab.at/3F4kAZk
https://www.flickr.com/photos/9479603@N02/49755349401
https://www.flickr.com/photos/bryanalexander/17182506391
https://www.flickr.com/photos/astrablog/4133302216

	RPC APIs
	RPC APIs
	RPC APIs
	Ethereum JSON-RPC
	Ethereum JSON-RPC
	gRPC
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs: Response
	RESTful APIs
	RESTful APIs
	RESTful APIs
	GraphQL APIs
	GraphQL APIs
	GraphQL APIs
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries: Result
	Queries: Result
	Queries: Result
	Queries: Result
	Mutations
	Mutations
	Mutations
	Mutations
	Mutations: Response
	Considerations
	API Uses
	Response customisation
	Performance
	Caching
	Data Transfer
	Data Transfer
	Versioning
	Versioning
	Design considerations
	Design considerations
	Correctness
	Correctness
	Correctness
	Correctness
	REST Errors
	GraphQL Errors
	API Reference
	Tutorials
	GitHub GraphQL
	GitHub REST
	Photo credits

