

Testing is one of the pillars
of writing robust software.

Tests should give you
confidence that you aren’t
shipping broken software.

But... testing can be tough.

Especially with Ul components.

s

N 0.’
N~

1 <template>

2 <div class="color-picker">

3 <ul class="swatches">

4 <li

5 tkey="index"

6 v-for=" (swatch, index) in swatches"
7 :style="{ background: ~“#${swatch}"
8 class="swatch"

) :class="|[

10 { active: index === activeSwatch
11 { light: isLight(swatch) }

12 1"

13 @click="activeSwatch = index"

14 >

15 <check-icon />

16 </1li>

17

18 <div class="color">

19 <button
20 :key="index"
21 v-for=" (mode, index) in colorModes"
22 class="color-mode"
23 :class="[{ active: index === activeMode },
24 @click="activeMode = index"
25 >
26 {{ mode }}
27 </button>
28 </div>
29 <div class="color-code">{{ activeCode }}</div>

30 </div>
31 </template>

33 <script>

“color-mode-${mode} "]"

34 import { rgb, hex, hsl, isLight } from "@/utils/color";

35 import CheckIcon from "@/assets/check.svg";

37 const modes = { rgb, hex, hsl };

HTML?

CSS classes?
View logic?
Event handlers?
Methods?
Computed properties?
Lifecycle steps?

100% coverage?
Unit vs. integration vs. e2e?

Artwork by

https://dribbble.com/coffeemademedoit

Artwork by

https://dribbble.com/coffeemademedoit

Test-Driven Development (TDD)
Popularized by Kent Beck

Red

Write a test that describes an expected
behavior, then run it, ensuring it fails.

Green

Write the dumbest, most straightforward
codeyou can to make the test pass.

Refactor
Refactor the code to make it right.

What does TDD look like with Vue?

&

Vue Test Utils + Jest

& gRQRQke

2 0of5

Thinking time!

P

2 0of5

Coding time!

Tests should.giveyou
confidence that you aren’t
shipping broken software.

Black box testing

-

Assert only the public interface.

Who are your users?

Final user

With Ul components,

your public interface is
bigger than you think.

ALLTHETHINGS

TDD lets you write robust
tests, not too many and not
too few.

TDD encourages refactors,
which leads to
better software design.

Your software's contract
Is infinitely more important
than the way you implement it.

Don't skip the green step.

TDD is much easier to
follow with specs.

But

TDD takes
a lot of time.

So, is it worth it?

With practice, you will
get faster at TDD.

Fixing bugs is far more costly
than preventing them.

YW @frontstuff_io
() github.com/sarahdayan
[; bit.ly/20xVzCO

