
A Meritocracy of
Pull Requests

Lorna Mitchell, Nexmo

Smile!

Developer Advocate @ Nexmo, Open source maintainer, GitHub native (other git hosts are available)

Pull requests: soft skill superpower. Let's be serious and deliberate about being more awesome at PRs

meritocracy
noun plural -cies
• rule by persons chosen not because of birth or wealth, but for

their superior talents or intellect
• the persons constituting such a group
• a social system formed on such a basis

https://www.dictionary.com/browse/meritocracy

@lornajane

https://www.dictionary.com/browse/meritocracy
Merits for pull requests: quality, clarity, completeness.

All pull requests are not created equal. Yours will be more equal than others

Who Opens a Pull Request?

@lornajane

You do

Who Reviews a Pull Request?

@lornajane

You do

in open source: gatekeeper. In industry: peer/colleague. NOT SENIOR DEV

One team used round robin (before source control). Shared workload, shared excellence

You can be awesome reviewer - so ace contributor. Get inside the heads of others and get things done. EMPATHY

Pull Request Outcomes

@lornajane

It's about the goal. Begin at the end, go on until the beginning

CLOSE

@lornajane

If you are closing, do it now. Be (cruel?) kind, be clear.

PR too large for safe review (joindin symfony rewrite - first of many joindin stories)

Unwanted/niche features (more OS, needs manicured backlog). Support until end of time.

pro tip ...

Small
(pull request)

Is Beautiful

@lornajane

Small PRs are safe to review and merge. Fewer conflicts, move faster

CLOSE

@lornajane

Be kind. Be clear. Sometimes the second attempt is better. Say thanks

Commit access? Then you have veto - so close (reversible!)

Downbeat start, sorry :(Important to think about this outcome

MERGE

@lornajane

Merging. Not reviewing. Just the act of bringing code into your project

Who merges? Reviewer. Improves review quality, reduces delays. WIP HAS A COST

Review is always a second person. Used to improve (PCI) compliance, second-pair-of-eyes pattern is good practice

If sole developer, sleep first :)

No hard rules, I do merge the tricky ones!

 Beware Merge Conflicts

Option 1 : git merge --abort

Option 2 : edit and add each file, then commit.

@lornajane

Some conflicts are normal. Many? Branches too large/slow or teams not communicating

GitHub suggests web interface for easy bits, CLI for hard bits. CLI confidence is useful.

Talk through this, video demo available

Special Project Requirements
You may be asked to:
• Rebase your branch
• Squash your branch into a single commit

Both of these use git rebase but in really different ways!

@lornajane

Rebasing

@lornajane

Branches are a label to a commit. Each commit has a parent. Branches are imaginary

Two branches, both have changes.

Rebasing

@lornajane

Re-do work as if we started from current master

New parent means new commit hash and force push

Rebasing
1. git checkout master

2. git pull

3. git checkout feature

4. git rebase master

5. git push -f <-- use with extreme caution

@lornajane

Get branches up to date with remotes. Always.

Rebase like this. Simple command, be clear what's happening

You rewrote history, not allowed. So force if: you are up to date, others are aware

video demo available

Squashing
Uses "interactive rebase" - rewriting branch history.

1. git rebase -i [base commit]

2. Text file is ordered oldest to newest!
3. Edit, re-order or remove lines as desired
4. Instructions are in the file: f for fixup just adds this commit

into the one before

@lornajane

I do rebase interactive when I didn't actually fix it, or forgot to add file, bump version

Combining commits loses data, who did what, the commit messages

I dislike squash: I prefer truth to beauty. Used mostly for projects who generate changelogs

If your commits are already a mess, probably you can squash! ...

Commit Messages

https://chris.beams.io/posts/git-commit/

@lornajane

https://chris.beams.io/posts/git-commit/
Editors encourage repeat commits

Up to you: how good do you want to be? Part of the commit, as much as code

REVIEW

@lornajane

Not a GitHub status, important bit of process

Pull request review is a developer superpower. So valuable.

Also your pull requests will be better

Looking for better, not perfect. Merge all improvements, however incremental.

 Do not view the diff

@lornajane

GitHub shows diff. It is a trap into mediocrity, or commenting line-by-line. Resist.

Do not view the diff. The tech is not the hard part. I will tell you when.

REVIEW

@lornajane

1. Understand purpose? Title (I edit a lot), description, issue/feature/bug?

Once got a PR to fix major login bug but it was called implements the swingsTheCat function

Imagine tired and busy Lorna reviews all your PRs

 Do not view the diff

@lornajane

REVIEW

@lornajane

2. What shape expected?

e.g. PR for footer change: scary DB statement

Are requirements clear? Invent for your own PRs

 Do not view the diff

@lornajane

REVIEW

@lornajane

3. Ready to examine change. Get code, run locally, poke at bug/feature

Can you break it? I can.

Ask as many questions as you need to. Better while it isn't live!

Language Matters

You "review" a pull request. You don't "merge" one.

@lornajane

This is about attitude. I review for you, I have your back.

I'm going to make this the best PR it can be.

REVIEW

@lornajane

OK you can see code now

Catch my var_dump please

What is NOT HERE? Side effects? Reports? Deployable? Operable?

This is magic. Any developer can practice and improve and perform at this.

Have a clear view (not always GitHub web view) ... know your tools ...

Diff and DiffTool Tricks
git diff master...HEAD <-- everything on this branch,
regardless what has happened on master since

Configure your difftool and then replace diff with
difftool in any command to get a graphical interface

@lornajane

video demo available

Configure difftool: google operating system and diff, maybe editor? Then google chosen tool and difftool to get config for git.

Automate All The Things

@lornajane

Get the machines on our side!

Automate the easy stuff. Coding standards, lint check, tests, cache creation

Nexmo Developer Portal builds all pages, so helpful

Easier to take criticism from a robot

The Art of Feedback

@lornajane

If you get flamed, change projects (or jobs). Open source is not like that, keep looking for the place where you're adored

Sandwich format unfashionable but start with kind/thankyou.

Context of committer. Your desired outcome? Updated PR? Future contributions? Or not??!

ALL showstoppers.

Max 3 other points, then shut up. For OpenSource: fix. For colleagues: coach.

If you didn't run the code, you
didn't review the PR.

@lornajane

It's about TRUST. Reviewing = facilitating good work = enabling shared goals

Don't embarrass us both. Please.

OK ... you can open PRs now

OPEN

@lornajane

Get the details in place. Title? Get picked first!

Use machines: Fixes #123 will link to issue and close it when PR merges

Get inside reviewer's head, make it easy. Show them the acceptance criteria, understand gravity and readiness of your PR

Sales person fills in form so you only have to sign! Not quite like that but don't make them work

Pull-Request Ready?
Your project is pull-request ready if:
• It has a README
• There is a CONTRIBUTING.md file with expectations in
• Build/tests run when a PR is opened
• (optional) A pull request template outlines dependencies

@lornajane

Make it easy for people to contribute in the first place - works for new hires as well

GitHub prompts with these files. Oil the wheels, get things through smoothly, every time.

Write your expectations: no drama

Nexmo PR template on API specs (we use OpenAPI) to require version bump. Incomplete template? Incomplete PR

Pave the way you want people to walk, shepherd them to success

A Meritocracy
of Pull Requests

Get your PRs accepted on their merits. Be as good as you want, it does take work (and knowledge, that you now have)

Such a key skill, let's be deliberate about doing this really well and shipping it

Resources
• https://joind.in/talk/b45a3
• https://gitworkbook.com
• https://lornajane.net
• https://github.com/matthewmccullough/scripts

And, of course: http://octodex.github.com

@lornajane

https://joind.in/talk/b45a3
https://gitworkbook.com
https://lornajane.net
https://github.com/matthewmccullough/scripts
http://octodex.github.com

	meritocracy
	Who Opens a Pull Request?
	Who Reviews a Pull Request?
	Pull Request Outcomes
	CLOSE
	CLOSE
	MERGE
	Beware Merge Conflicts
	Special Project Requirements
	Rebasing
	Rebasing
	Rebasing
	Squashing
	Commit Messages
	REVIEW
	REVIEW
	REVIEW
	REVIEW
	REVIEW
	Diff and DiffTool Tricks
	Automate All The Things
	The Art of Feedback
	OPEN
	Pull-Request Ready?
	Resources

