A solution for
the visual and
source order
disconnect

Content lead for Chrome
Developer Relations

RaChel AndreW rachelandrew.co.uk

-
eve Giving Content Priority with

X

+

2% 24ways.org/2012/css3-grid-layout/ hxd

24 WAYS

18 December 2012

Published in Code

7 comments

Giving Content Priority with CSS3
Grid Layout

Rachel Andrew

Browser support for many of the modules that are part of CSS3 have enabled us
to use CSS for many of the things we used to have to use images for. The rise of
mobile browsers and the concept of responsive web design has given us a
whole new way of looking at design for the web. However, when it comes to lay-
out, we haven’t moved very far at all. We have talked for years about separating
our content and source order from the presentation of that content, yet most of
us have had to make decisions on source order in order to get a certain visual
layout.

Owing to some interesting specifications making their way through the W3C process

at the moment, though, there is hope of change on the horizon. In this article I'm go-

PR T, = V- V'~ SN, J. IS, (R, T Vo V- WL . [DU T, (. [N, TR T I O Y - S

24ways.org/2012/css3-grid-layout

AVEREVAN

</ Baseline Widely available COHOe e» 8 -

CSS Grid, Baseline Widely available since January 2023

Without subgrid we create the potential for

accessibility problems. Authors may remove
semantic markup in order to use grid layout.

Slide from 2015 CSS Day grid talk

.grid a:nth-child(3) {
grid-column: span 3;
grid-row: span 3;

}

.grid {
display: grid;
grid-auto-flow: dense;
grid-template-columns: repeat(4,1fr);

}

Here’s a cool thing

Please don't use it.

CSS Grid Level 1

Correct source order is important for speech, for sequential navigation
(such as keyboard navigation), and non-CSS UAs such as search engines,
tactile browsers, etc. Grid placement only affects the visual presentation!
This allows authors to optimize the document source for non-CSS/non-
visual interaction modes, and use grid placement techniques to further
manipulate the visual presentation so as to leave that source order intact.

Separating content from presentation

Something we've tried to do since the early days of CSS layout.

® @ &> Grid, content re-ordering anc X 97 o

< c 2% rachelandrew.co.uk/archives/2019/06/04/grid-content-re-ordering-and-accessibility/ r) PiS

Rachel Andrew Grid, content re-ordering and

Doing stuff on the web since 1996.

accessibility
June 4,2019 In Web stuff
Hello
About
Blog I have long been concerned about the potential accessibility problems
Now that grid layout could cause. These essentially centre around the
concept of disconnecting the source from the visual display.
Books
Writing As a short explanation, values of display - otherthan none, do not
E—— change the logical order or visibility of your content. So, the order that
rojects
J things are in the source, is the order that they are tabbed to, and the
Contact me order they are read out by a screen reader. If you mess around with the

order - be that with flexbox flex-direction: row-reverse,or
grid-auto-flow: dense, orby positioning items with grid layout -
you risk making a very odd and disconnected experience. I'm not an

ally expert, for a much better description see:

« The Dark Side Of The Grid: Visual Order

« Source Order Matters

« Flexbox and the keyboard navigation disconnect

https://rachelandrew.co.uk/archives/2019/06/04/grid-content-re-ordering-and-accessibility/

[] @ O [css-grid] Masonry layout in = X +

<« c 25 github.com/w3c/csswg-draftsfissues/5675 %) DA

& w3c / csswg-drafts ' Public £\ Notifications %9 Fork 636 Y7 Star 43k~

<> Code (%) Issues 3.2k i Pull requests 79 () Actions [Projects 17 O Security |~ Insights

[css-grid] Masonry layout in CSS Grid 3 has potential to cause accessibility ==
problems with reading order. #56/5
nattarnoff opened this issue on Oct 28, 2020 - 12 comments

9 nattarnoff commented on Oct 28, 2020

Assignees

No one assigned
Assuming all authors code their masonry grid in a valid reading order, screen reader user who are non-visual will

have no problem with it. But once we introduce visual screen reader users, low vision with no assistance,
magnification software users, and users with cognitive problems, the layout begins to cause problems in focus order Labels

and reading order. css-grid-3 topic: masonry

If we have
<div> Projects
<item>The quick</item> None yet
<item>brown fox</item>
<item>jumped</item>
- 7 Milestone
<item>over</item>
<item>the lazy</item> No milestone
<item>dog</item>
</div> Development
The screen reader user will hear "the quick brown fox jumped over the lazy dog." When we add the CSS and visual No branches or pull requests

layout, the reading order could be realistically be:

9 participants

SE——— W & | PR Y STV Y 1 TN

https://github.com/w3c/csswg-drafts/issues/5675

o [} Flexbox & the keyboard nav b4 + v

<« & 25 tink.uk/flexbox-the-keyboard-navigation-disconnect/ T) A &

Home About Léonie On other websites

Tags v Flexbox & the keyboard
Categories - navigation disconnect

Talks - 04 February 2016 | Code Things

Theme

Light Dark

CSS Flexbox can create a disconnect between the DOM order and visual
presentation of content, causing keyboard navigation to break. For this reason, the
CSS Flexible Box Layout module warns against resequencing content logic, but
asking authors not to use flexbox in this way seems illogical in itself.

TLDR: The only viable way (in my opinion) for the flexbox disconnect to be
resolved, is in the browser (as with the Firefox "bug") and the accessibility tree.

https://tink.uk/flexbox-the-keyboard-navigation-disconnect/

reading-flow

CSS Display Level 4

Can we just opt into the order that flex or
grid items are laid out?

Reading or visual order is subjective

three

two

one

flex-direction: row-reverse

In most cases DOM order is
what you want

No universal switch to let developers forget about source order.

Scoped to particular layout methods

We're not trying to do this on block layout.

reading-flow: normal

Follow the order of items in the DOM. The initial value.

flex {
display: flex;

flex-direction: row-reverse; three

normal
flex-flow
flex-visual
grid-rows
grid-columns
grid-order

Values for reading-flow

reading-flow: flex-visual

Follow the visual layout, taking writing mode and direction into account.

flex {

display: flex;
flex-direction: row-reverse;
reading-flow: flex-visual;

}

reading-flow: flex-flow

Follow the flow order.

flex {

display: flex;

flex-direction: row-reverse; three

reading-flow: flex-flow;

Adding the order property

The reading flow now takes into account the modification made by order.

flex a:nth-child(3) {

order: -1;

}

flex {
display: flex;

flex-direction: row-reverse;
reading-flow: normal;

}

flex a:nth-child(3) {

order: -1;
} | ,
display: flex; ’ |

flex-direction: row-reverse;
reading-flow: flex-visual;

}

flex a:nth-child(3) {

order: -1;

}

flex {
display: flex;

flex-direction: row-reverse;
reading-flow: flex-flow;

}

Grid and reading flow

Automatic layout—grid-auto-flow: dense

one two

three four
five
SIX

seven

one

two

four

five

three

SIX

seven

reading-flow: grid-rows

Follow the reading order by row.

.grid a:nth-child(3) {
grid-column: span 3;
grid-row: span 3;

}

.grid {
display: grid;
grid-auto-flow: dense;
grid-template-columns: repeat(4,1fr);
reading-flow: grid-rows;

}

reading-flow: grid-columns

Follow the reading order by column.

one

three

four

two

five

SIX

seven

.grid a:nth-child(2) {
grid-column: span 3;
grid-row: span 3;

}

.grid {
display: grid;
grid-auto-flow: column dense;
grid-template-columns: repeat(5,1fr);
reading-flow: grid-columns;

}

Grid and reading flow

Line-based placement, grid-template-areas

.grid {
display: grid;
grid-template-columns: repeat(5,1fr);
grid-template-areas:
"bbbbb" six
"ddfff"

"ddeca"; five one

.grid {
display: grid;
grid-template-columns: repeat(5,1fr);
grid-template-areas:
"bbbbb" six

"ddfff"
"ddeca"; five one

reading-flow: grid-rows;

reading-flow: grid-order

As normal, but take the order property into account.

two

four

SIX

five

three

one

The reading-order property

For the children of a reading flow container.

Feeding the Bird
American 19th Century

oil on canvas
Not on View

1800
1953.5.63

Keelmen Heaving in
Coals by Moonlight
Joseph Mallord William Turner

oil on canvas 1835
West Building, Main Floor 1942.9.86
Gallery 57

Retablo
E. Boyd

watercolor, colored pencil
Not on View

Painted Chest
Majel G. Claflin

1935
1943.8.6831

National

Gallery of Art

.grid a:nth-child(3) {
grid-column: span 3;
grid-row: span 3;

}

.grid {
display: grid;
grid-auto-flow: dense;
grid-template-columns: repeat(4,1fr);
reading-flow: grid-rows;

}

.grid a:nth-child(5) {
grid-column: 4;
grid-row: 1;
grid-order: -1;

}

three

SIX
seven

Source order is important

Never use reading-flow to avoid the work of updating your HTML.

Create a sensible document

Then consider small tweaks to optimize the reading experience at different breakpoints.

Try it out in Chrome Canary

https://chrome.dev/reading-flow-examples

Rachel Andrew

Questions?

https://noti.st/rachelandrew/Aj6atb/

	Slide 1: A solution for the visual and source order disconnect
	Slide 2: Rachel Andrew
	Slide 3
	Slide 4
	Slide 5
	Slide 6: .grid a:nth-child(3) { grid-column: span 3; grid-row: span 3; } .grid { display: grid; grid-auto-flow: dense; grid-template-columns: repeat(4,1fr); }
	Slide 7: Here’s a cool thing
	Slide 8: CSS Grid Level 1
	Slide 9: Separating content from presentation
	Slide 10
	Slide 11
	Slide 12
	Slide 13: reading-flow
	Slide 14: Can we just opt into the order that flex or grid items are laid out?
	Slide 15: Reading or visual order is subjective
	Slide 16
	Slide 17: In most cases DOM order is what you want
	Slide 18: Scoped to particular layout methods
	Slide 19: reading-flow: normal
	Slide 20: .flex { display: flex; flex-direction: row-reverse; }
	Slide 21: normal flex-flow flex-visual grid-rows grid-columns grid-order
	Slide 22: reading-flow: flex-visual
	Slide 23: .flex { display: flex; flex-direction: row-reverse; reading-flow: flex-visual; }
	Slide 24: reading-flow: flex-flow
	Slide 25: .flex { display: flex; flex-direction: row-reverse; reading-flow: flex-flow; }
	Slide 26: Adding the order property
	Slide 27: .flex a:nth-child(3) { order: -1; } .flex { display: flex; flex-direction: row-reverse; reading-flow: normal; }
	Slide 28: .flex a:nth-child(3) { order: -1; } .flex { display: flex; flex-direction: row-reverse; reading-flow: flex-visual; }
	Slide 29: .flex a:nth-child(3) { order: -1; } .flex { display: flex; flex-direction: row-reverse; reading-flow: flex-flow; }
	Slide 30: Grid and reading flow
	Slide 31
	Slide 32
	Slide 33: reading-flow: grid-rows
	Slide 34: .grid a:nth-child(3) { grid-column: span 3; grid-row: span 3; } .grid { display: grid; grid-auto-flow: dense; grid-template-columns: repeat(4,1fr); reading-flow: grid-rows; }
	Slide 35: reading-flow: grid-columns
	Slide 36
	Slide 37: .grid a:nth-child(2) { grid-column: span 3; grid-row: span 3; } .grid { display: grid; grid-auto-flow: column dense; grid-template-columns: repeat(5,1fr); reading-flow: grid-columns; }
	Slide 38: Grid and reading flow
	Slide 39: .grid { display: grid; grid-template-columns: repeat(5,1fr); grid-template-areas: "b b b b b" "d d f f f" "d d e c a"; }
	Slide 40: .grid { display: grid; grid-template-columns: repeat(5,1fr); grid-template-areas: "b b b b b" "d d f f f" "d d e c a"; reading-flow: grid-rows; }
	Slide 41: reading-flow: grid-order
	Slide 42
	Slide 43: The reading-order property
	Slide 44
	Slide 45: .grid a:nth-child(3) { grid-column: span 3; grid-row: span 3; } .grid { display: grid; grid-auto-flow: dense; grid-template-columns: repeat(4,1fr); reading-flow: grid-rows; } .grid a:nth-child(5) { grid-column: 4; grid-row: 1;
	Slide 46: Source order is important
	Slide 47: Create a sensible document
	Slide 48: Try it out in Chrome Canary
	Slide 49: Questions?

