Sharpening Our Pencils on Carbon Measurement

revision 5

EMPOWERING OPEN.

RE SI

APRIL 19-20, 2023 PRAGUE, CZ

Sustainability

Sharpening Our Pencils on Carbon Measurement

Erik Riedel, PhD

Chief Engineering Officer

Flax Computing

Abstract

This talk will show that using carbon footprint as a common metric to assess a piece of computing equipment allows straightforward comparison of technologies and designs on a "performance per carbon" basis, bringing together operational (energy use inputs) and scope 3 (production & materials inputs) carbon, along with workload-aligned performance metrics to compare technologies and systems. Our proposed methodology to apply "carbon points" to hardware components and systems can allow system-level, rack-level, and data-center-level quantification of detailed carbon footprints, which can then be optimized and reduced. You cannot improve what you cannot measure, and we believe that carbon footprint can be used today as a successful common metric for comparison. We will outline our database of footprint calculations and comparisons with real OCP systems, and we will review our success in bringing carbon-advantaged computing to OCP deployments in several real customer scenarios worldwide.

Outline

- Advances in computing technology drive hardware upgrade cycles
- Important to quantify the benefits
 - proposal: performance / carbon
- Example networking cards
- Example flash drives
- Extending server life why it works
- Call to action

Technology Advance

Drives Upgrades

Technology Constantly Advances

hardware, software, operations, applications, methods, methodologies Computing Technology has advanced in leaps & bounds.

Makes sense to regularly consider updates & refreshes.

Network "Appliances" Can Win Today

NASRaQ System

-	HIT	AR

 Cobalt NASRaQ
 \$1,500 x 240 = 360,000

 250 MHz RISC, 32 MB RAM, 2 x 10 GB disks

 Extra Memory (to 128 MB each)
 \$183 x 360=

 3Com SuperStack II 3800 Switch
 \$7,041 x 11=

 240/24 = 10 + 1 to connect those 10
 77,451

 Dell PowerEdge 6350 Front-End
 11,512

 Rack Space (estimate 4x as much as the Dells)
 82,840

 Installation & Misc
 50,000

Dell PowerVault 650F	\$40,354 x 12 =484,248
512 MB cache, dual link control	lers, additional 630F cabinet,
20 x 9 GB FC disks, software su	pport, installation
Dell PowerEdge 6350	$11,512 \times 12 = 138,144$
500 MHz PIII, 512 MB RAM, 2	27 GB disk
3Com SuperStack II 3800 Swite	ch 7,041
10/100 Ethernet, Layer 3, 24-por	t
Rack Space for all that	20,710

Dell PowerEdge & PowerVault System

Comparison

	Dell	Cobalt
Storage	2.1 TB	4.7 TB
Spindles	240	480
Compute	6 GHz	60 GHz
Memory	12.3 GB	30.7 GB
Power	23,122 W	12,098 W
Cost	\$650,143	\$647,683

Slide from my PhD thesis defense in 1999

Today

100G networking

PB storage

THz computing

TB memory

Network "Appliances" Can Win Today

NASRaQ System

Rack	s Space for	or all	that	
				The second s

	and the second		Contract of the local division of the local
500 2	x 240	=360	.000

11,512

82,840

50,000

Cobalt NASRaQ \$1. 250 MHz RISC, 32 MB RAM, 2 x 10 GB disks Extra Memory (to 128 MB each) \$183 x 360= 65,880 3Com SuperStack II 3800 Switch \$7,041 x 11= 77,451 240/24 = 10 + 1 to connect those 10

Dell PowerEdge 6350 Front-End

Rack Space (estimate 4x as much as the Dells) Installation & Misc

Dell PowerVault 650F	\$40,354 x 12 =484,248
512 MB cache, dual link control	lers, additional 630F cabinet,
20 x 9 GB FC disks, software su	pport, installation
Dell PowerEdge 6350	$11,512 \times 12 = 138,144$
500 MHz PIII, 512 MB RAM,	27 GB disk
3Com SuperStack II 3800 Swit	ch 7.041

3Com SuperStack II 3800 Switch 10/100 Ethernet, Layer 3, 24-port

Dell PowerEdge & PowerVault System

20,710

1999

	Dell	Cobalt
Storage	2.1 TB	4.7 TB
Spindles	240	480
Compute	6 GHz	60 GHz
Memory	12.3 GB	30.7 GB
Power	23,122 W	12,098 W
Cost	\$650,143	\$647,683

Comparison

2022

8,640 TB	storage
480	spindles
1,152 GHz	compute
122,880 GB	memory
76,800 W	power
\$650,000	cost

Detailed Example -

Networking Cards

 Mellanox MCX-4421A dual 25G networking to x8 PCI 60 cm² board area 272 mm² chipset (1m transistors)

Mellanox MCX-516A dual 100G networking to x16 PCI 90 cm² board area 625 mm² chipset (2m transistors)

ConnectX-4

Mellanox MCX-**4**421A dual 25G networking to x8 PCI 60 cm² board area 272 mm² chipset (1m transistors)

ConnectX-5

Mellanox MCX-**5**16A dual 100G networking to x16 PCI 90 cm² board area 625 mm² chipset (2m transistors)

ConnectX-6

ConnectX-7

Mellanox MCX-4421A dual **25G** networking to x8 PCI 60 cm² board area 272 mm² chipset (1m transistors)

> measured performance 23 Gbit/s msrp \$255 street \$180

Mellanox MCX-516A dual **100G** networking to x16 PCI 90 cm² board area 625 mm² chipset (2m transistors)

measured performance 32 Gbit/s msrp \$1509 street \$890

Mellanox MCX-4421A dual **25G** networking to x8 PCI 60 cm² board area 272 mm² chipset (1m transistors)

> measured performance 23 Gbit/s msrp \$255 street \$180

Mellanox MCX-516A dual **100G** networking to x16 PCI 90 cm² board area 625 mm² chipset (2m transistors)

> 96 Gbit/s measured performance 32 Gbit/s msrp \$1509 street \$890

Detailed Example

Flash Drives

allow more than the

Flash Drive Performance Comparisons

					weight	IOPS	BW	variation
Samsung	PM983	NVMe/M.2	960 GB	MZ1LB960HAJQ	12g	527,000	2,931 MB/s	2.55%
Samsung	PM983	NVMe/M.2	3840 GB	MZ1LB960HAJQ	15g	518,000	2,750 MB/s	3.69%
WD	SN720	NVMe/M.2	2000 GB	SDAQNTX-2T	7g	314,000	3,172 MB/s	0.02%
WD	SN630	NVMe/U.2	7680 GB	WUS3BA176C7P3E3	65g	435,000	2,100 MB/s	4.15%
Kingston	KC600	mSATA	256 GB	SKC600M	5g	136,000	567 MB/s	0.07%

Upgrading Your Servers

traditional server

- dual CPUs, two 1U heatsinks, twelve 1U fans

OCP node

dual CPUs, two 200

heatsinks, two 20U fans

Partnerships Project OriginMark

• joint with molg

APRIL 19-20, 2023 PRAGUE, CZ

OCP

d

Hyperscaler Product Finance aws eС MUAWEI F:T•N Google 🔿 Meta 🚦 Microsoft ARTESYN GI PARTNERS ENCONNEX Colocation |SID> Natron Energy INTEGRA legrand **W** mireteon 0 Aligned AQ Chayora # 2 Schneider Tate CloudHO COMPASS' NOVOS OMNI-THREAT Power Utility CUMULUS ← CyrusOne. Cyxtera DATABANK COMPUTENORTH VERTIV. ENCHANTED ROCK The Power is On. <u></u> Edge Presencer COLLE SCALE C) edgeconnex Service DIGITAL REALTY * Green Mountain MOUNTAIN" CIRKLA CBRE Net ANSHELIX EVOQUE IL KAO DATA PATA CENTERS Software -----O NTT **())** JLL Netrality CRITICAL COTO KevlinX HYPERCO. Intine 5 EDGEVANA switch 🜔 Rahi molæ STACK STREAM PURE DC C northshore ON VALUE yond." SALUTE SMITH VPLS Walhalla nZero TS PUREYER UN VANTAGE

Introducing iMasons Climate Accord

The role of the digital infrastructure industry in fighting climate change By InterGlobix

ICA Founding Companies

molg

Traceability

to building scale and beyond

Given OriginMark's unique assembly relationship data structure, valuable data, **such as** embodied carbon, can be computed based on roll-up aggregate total of materials and processes inside the individual components, whether that is an individual units, an entire buildings, or a global asset portfolios.

APRIL 19-20, 2023 PRAGUE, CZ

Consider Extending

Server Life

The Best Server Is The One You Already Have

(Maybe)

Understand the full carbon footprint of your computing.

Reduce your footprint. And your complexity. And your costs.

Upgrading Your Ride

17 MPG fuel economy0 to 60 in 12 seconds25 MPG fuel economy0 to 60 in 2 seconds

Upgrading Your Ride

17 MPG fuel economy0 to 60 in 12 seconds- MPG fuel economy0 to 60 in 4 seconds

Upgrading Your Servers

traditional server

Upgrading Your Servers

traditional server

- dual CPUs, two 1U heatsinks, twelve 1U fans

OCP node

dual CPUs, two 200

heatsinks, two 20U fans

Why it works

3 years primary	3 years secondary	3 years tertiary
	9 year design lifetime	

Recertified hardware approach – facilitate secondary and potentially tertiary use stages for technology assets in various forms

Why it works

	3 years tertiary	years secondary	mary 3	3 years pri		
10-12 years	าย	ear design lifetim	9 ує			
s technology running	t, anything that keep	condary In fac	3 years seco	nary	5 years pr	
g as the technology is ng by somebody, plus	longer will be beneficial, as long as the technology still useful for something by somebody, plu maintainable & serviceable . SO use those actu			nary	5 years pr	
SO use those actual				4 years se	3 years primary	
echnology: workload enance complexity &	criteria to evaluate ALL technology: worklo performance, ongoing maintenance complexit ongoing service cos				2 yrs primary	
ongoing service costs.					3 years primary	

Call to Action

- Reach out to us to get involved
- Engage us to evaluate / quantify your server carbon footprints
 - <u>www.flaxcomputing.com</u>
- Evaluate your own servers, share the results with us <u>report @ flaxcomputing.com</u>
- Contribute measurements and component details <u>data @ flaxcomputing.com</u>

Dr. Erik Riedel at #AllThingsOpen @er1p

i build sustainable clouds; father of four; PhD; engineering leader, do-er, & mentor; practitioner of innovation & inclusion; he/him; my heart is in the work

5,001 Following 3,009 Followers

Erik Riedel, PhD, Chief Engineering Officer, Flax Computing Twitter: @er1p, @RiedelAtWork email: erik @ flaxcomputing.com

APRIL 19-20, 2023 PRAGUE, CZ

Open Discussion

Green Software Foundation

About

Working Groups

Resources Articles

We are building a trusted ecosystem of people, standards, tooling and best practices for

Projects

GREEN SOFTWARE

Sign up

Sign up to our newsletter...

software footprint

(ength,c=!1)}a.memor return n.each are function(){return [var b=[["resolut inefficient ion(){return e doi toolchains fail(c.reject 2].disable,b [🛛 🚺 function(a,b,c){returns fill(g.reject):--[] 🕼 📖 n.ready Wait> 🛛 www.statechange",K) wentListener("DOMCom weout(f,50)}J(),n.remin (iv"),e.style.cs 1), c. removeChild /^(?:\{[\w\W]* data(a,b,c)}else 💕 🕼 🕹 j [k] & & (e) 👪 🜒 ==d&&(g [n . Cam (ase));b in d?b embed ": 0, "object a: function(a, melCase(d.slice(5 removeData(this function(){n.degueue _removeData(a,b) dequeue(this

Acknowledgements

Photo acknowledgement and thanks to:

https://unsplash.com/photos/K5KmnZHv1Pg

https://unsplash.com/photos/rmzQwpKt4XM

https://unsplash.com/photos/oalS6SkZc_s

https://unsplash.com/photos/MgtHZ4zlC1U

https://unsplash.com/photos/k39RGHmLoV8

<u>Tom Fisk</u> for <u>https://www.pexels.com/photo/yellow-excavator-2101137</u>

Zetong Li for https://www.pexels.com/photo/green-leafed-plant-1784577

<u>Aleksandar Pasaric</u> for <u>https://www.pexels.com/photo/view-of-cityscape-325185</u>

Anete Lusina for https://www.pexels.com/photo/glass-bottle-with-activated-charcoal-granules-scattered-on-table-6331084/

Oleksandr Pidvalnyi for https://www.pexels.com/photo/color-pencil-lot-2836955/

APRIL 19-20, 2023 PRAGUE, CZ