
Open UI

Customizable Control UI:
Solving a Multi-Decade Problem
Greg Whitworth (@gregwhitworth) - Salesforce

Melanie Richards (@soMelanieSaid) - Microsoft

Agenda

Presentation (1 hour)

• Problem

• What is a Control?

• Spectrum of Customization

• Solving Fully Style-Able Controls

• Solving Fully-Extensible Controls

• Process

Break (15 min)

Discussion + Resolutions (1 hour)

Break (15 min)

Discussion + Resolutions (1.5 hours)

Problem

Survey results: why developers recreate form controls

Survey results: top 10 controls recreated by web developers

Fabric

Recreating controls
causes developer pain

Survey results: most frustrating form controls

MDN Web DNA Survey 2019 results: HTML pain points

Twitter complaints about controls, part I

Form Controls Opportunity Analysis: Participants

Research Recruiting

• Designer: 31

• Fullstack: 29

• Front-end: 14

Twitter

• Designer: 44

• Front-end: 112

• Back-end: 24
• Full-stack: 73

Form Controls Opportunity Analysis: Sample Questions

How satisfied are you with the experience of fully

styling the <select>* popup window on desktop?

How important is it for you to be able to fully style the

<select> popup window on desktop?

* This is just one example of the questions we asked regarding form
control styling in our Opportunity Analysis. We inquired generically and
about other form factors.

Form Controls Opportunity Analysis

Appearance

10.36

Frequency
(building your own)

10.48

Effort
(building your own)

13.54

Interop

15.23

Recreating controls causes
user experience issues

Survey results: many web developers are not testing for accessibility

A sampling of accessibility issues in the wild

Limited keyboard
support

Alexa Rank: 1,247

Limited keyboard
or AT support

Rank: 454

Not focusable
via Keyboard

Alexa Rank: 96

Not focusable

via Keyboard
nor AT Support

Alexa Rank:
1,293

Survey results: browsers tested during development

What is a Control?

What *is* a form control, anyway?

An MVC model for form controls

Model

Data members and capabilities

of the control, available to

script. Examples:

• value

• Form association

• Validity state Controller

Intermediary between model

and view.

• Inform model of interactions

with view, via input handlers

• Inform view of changes to

model, via events, CSS

pseudo selectors, exposed

properties

View

The user interface. Exposes

state to the user, enables the

user to interact with the control

and change state.

Our current mental model of a control

A control is a type of component that manages
user interaction.

The control has controller code that manages
changes in the component's states and its model
based on user interaction with its parts.

Spectrum of Customization

Controls currently fall along a customization spectrum

Less Customizability More

None

color picker

date picker

datalist

file picker

select picker

Hint

accent-color

color-scheme

Limited

range

file inputs

meter

option

optgroup

Progress

checkboxes*

radios*

select

Fully Style-able
(In some cases,

minor limitations)

text inputs

button

output

Label

summary

Fully Extensible

Level of customization: none

Interop needed: none

Level of customization: hint

select {
accent-color: #007eff;

}

Interop needed: none

Level of customization: limited

select::select-button {
fill: white;
background: #007eff

}

Interop needed: Limited

Level of customization: limited

select::select-button {
background-image: my-arrow.png;
background-color: #007eff

}

Interop needed: Limited

Level of customization: limited

Why is this not possible today with

the built-in <select>?

• Parts are not standardized

• Specific definition of what CSS

properties are valid on the

various parts

Interop needed: Limited

Level of customization: Fully Style-able

Why is this not possible today with

the built-in <select>?

• Listbox is not standardized

• Listbox does not allow overflow

• Option elements don’t allow layout

changes

Interop needed: High

Level of customization: Fully Style-able

What is needed to enable this?

• Standardized parts

• Standardized DOM Structure

• Standardized Base styles

Interop needed: High

Level of customization: Fully Extensible

Why is this not possible today with

the built-in <select>?

• Behaviors

• States

• Parts

• DOM Structure

• Structural styles

Interop needed: Full

Spectrum of Customizability

Less Customizability More

None

Does not allow any

style-ability or

extensibility to the

control or some

of its parts

Hint

Allows the author to

provide a value that the

UA applies to a

component or control

that aligns with the

spirit of the property

Limited

Pseudo elements, HTML

elements, attributes

that provide

customizability but are

limited in some manner

Fully Style-able

Elements that allow

developers to opt-in

to standardized parts,

DOM structure, and

base styles that user-

agents apply their

styles upon

Fully Extensible

Standardization of

a control's

anatomy, states,

behaviors, with the

capability of reusing

controller code via
defined parts

Solving fully style-able controls

An MVC model for form controls

Enable authors to use the platform

Model

Data members and capabilities

of the control, available to

script. Examples:

• value

• Form association

• Validity state

Enable authors to use the platform

Controller

Intermediary between model

and view.

• Inform model of interactions

with view, via input handlers

• Inform view of changes to

model, via events, CSS

pseudo selectors, exposed

properties

Enable authors to style

View

The user interface. Exposes

state to the user, enables the

user to interact with the control

and change state.

How to enable standardized DOM & Styles

The custom attribute

<select>
<option></option>

</select>

The custom attribute modifies the DOM structure to be only the

standardized parts, structural styles, and state styles.

The custom attribute

<select custom>
<div part=“button-container”>

<div part=“selected-value”></div>
</div>
<div part=“listbox-container”>

<option></option>
</div>

</select>

The custom attribute enables the structural stylesheet

The custom attribute enables the structural stylesheet

select[custom] { } select[custom][open] { }

How to enable standardized DOM & Styles

Structural CSS

User Agent Stylesheet

Author Stylesheet
“UAs should include in their user agent stylesheet style

rules to give widgets a recognizable shape

when appearance is none.”

And then there’s all: unset ☺ as well

https://drafts.csswg.org/css-ui-4/
https://drafts.csswg.org/css-ui-4/
https://drafts.csswg.org/css-ui-4/

Solving fully extensible controls

An MVC model for form controls

Enable authors to use the platform

Model

Data members and capabilities

of the control, available to

script. Examples:

• value

• Form association

• Validity state

Enable authors to use the platform

Controller

Intermediary between model

and view.

• Inform model of interactions

with view, via input handlers

• Inform view of changes to

model, via events, CSS

pseudo selectors, exposed

properties

Enable authors to extend

View

The user interface. Exposes

state to the user, enables the

user to interact with the control

and change state.

Web devs can update slots to replace the content of control parts...

<div slot="listbox" part="listbox" class="my-box">
<option>

<p class="name">Annie Lindqvist</p>
<p class="title">Designer</p>
Online

</option>
...

</div>

...or they can replace the entire view with their own Shadow DOM

let customSelect =
document.createElement('select');

customSelect.setAttribute("custom", "");

let selectShadow = customSelect.attachShadow({
mode: 'open' });

selectShadow.innerHTML = `My custom select UI`;
document.body.appendChild(customSelect);

Core parts of the author's shadow DOM must be labeled with the part attribute:
part="button", part="listbox"

Parts help the web dev leverage the platform

Controller code can:

1. Inform the model of user interactions with the view,
e.g. selected option

2. Apply the right intrinsic accessibility semantics, e.g.

part-appropriate roles, states, and properties

3. Wire up the correct behaviors, e.g. keyboard
interactions for opening and closing the select

popup, traversing through options, etc.

Extensibility requires standardized DOM structure

Extensibility requires standardized states

Extensibility requires standardized behaviors

Process for holistic control
standardization

BlueprintDesign

Fabric

Fabric

Open UI

Blueprint

Discussion

Discussion Agenda

Break (15 min)

Problem (15 min)

Control Definition (15 min)

Spectrum (30 min)

Break (15 min)

Solutions for fully style-able/extensible, standardization (1 hour)

Process (30 min)

Discussion: The Problem

Proposed resolution: The Problem

Web developers needing to re-create a

browser's form controls is a problem.

Discussion: Definition of a control

Proposed resolution: Control Definition

A control is a type of component that manages
user interaction.

The control has controller code that manages
changes in the component's states and its model
based on user interaction with its parts.

Discussion: Spectrum of customization

Spectrum of Customizability

Less Customizability More

None

Does not allow any

style-ability or

extensibility to the

control or some

of its parts

Hint

Allows the author to

provide a value that the

UA applies to a

component or control

that aligns with the

spirit of the property

Limited

Pseudo elements, HTML

elements, attributes

that provide

customizability but are

limited in some manner

Fully Style-able

Elements that allow

developers to opt-in

to standardized

anatomy, DOM

structure, and base

styles that user-agents

apply their styles upon

Fully Extensible

Standardization of

a control's

anatomy, states,

behaviors, with the

capability of reusing

controller code via
defined parts

Proposed resolution: we will normatively define a spectrum of customizability for controls

What parts do you feel are necessary to explore to solve this problem?
What is necessary to avoid re-creating controls?

Less Customizability More

None

Does not allow any

style-ability or

extensibility to the

control or some

of its parts

A

Hint

Allows the author to

provide a value that the

UA applies to a

component or control

that aligns with the

spirit of the property

B

Limited

Pseudo elements, HTML

elements, attributes

that provide

customizability but are

limited in some manner

C

Fully Style-able

Elements that allow

developers to opt-in

to standardized parts,

DOM structure, and

base styles that user-

agents apply their

styles upon

D

Fully Extensible

Standardization of a

control's anatomy,

states, behaviors, with

the capability of

reusing controller code

via defined parts

E

Proposed resolution

We will standardize control anatomy (slots

and parts), states, and behaviors.

Fabric

Open UI

Blueprint

Proposed resolution

Control definitions will begin in Open UI to have a complete

specification created for all parts, states and behaviors.

New CSS pseudo elements, classes or primitives will be

standardized in the CSSWG. New elements, attributes or DOM

events will be standardized in WHATWG. New ARIA roles will be

standardized in the ARIA WG.

Appendix

Resources

• Initial thoughts on standardizing form controls

• Can we please style the <select> control?!

• Customizing control UI explainer

• Recording of the presentation by

Melanie Richards and Greg Whitworth

http://gwhitworth.com/blog/2019/07/form-controls-components/
http://gwhitworth.com/blog/2019/10/can-we-please-style-select/
https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/main/ControlUICustomization/explainer.md
https://www.youtube.com/watch?v=2S2nSqh6EUw

