
How to onCommunicate
isClearly() ?!

Thomas ‘gossi’ Gossmann

GOAL

Improve communication within an interdisciplinary team

WHERE

I will shake and disrupt your naming skills

WHY

Trigger different ways of thinking for new vocabulary

1. Why we are not onCommunicating isClearly() !

2. How to onDetect to isNotCommunicatingClearly() ?

3. How to communicate clearly :)

Part I

Why we are not onCommunicating isClearly() !

Why we are NOT onCommunicating isClearly() !

Bold Statement:

- onPurpose
- onIntentionally
- inFullAwareness

=> Because of theLanguage we onUse

Developers speak …

dev-lish

- Dialects:
- CRUDlish
- RESTlish
- FrontendLish
- BackendLish

Developers speak …

dev-lish

- Dialects:
- CRUDlish
- RESTlish
- FrontendLish
- backend_lish

Example: A Developer in a Restaurant…

“Hey <FoodOrderAndDeliveryProvider>, here is my onOrder handler and
whenever you think I am isReady, please call it”

Nouns vs. Verbs

we eat nouns
we buy nouns from the store

we sit on nouns
we sleep on nouns

Nouns

boring - just things
static

Verbs

interesting
dynamic

Yegge, S. (2006)

Developers and English Language (Verbs, Nouns, …)

- Not all of us are native english speakers
- Technical language has a very high gravity on our words (CRUD, REST, click)
- The two hardest problems in computer science:

0. Cache invalidation → We’ll receive education to solve the hardest algorithms
1. Naming things → Who had a linguistic course?

Part II

How to onDetect to isNotCommunicatingClearly() ?

Methods for Detection

1. The Sound of Code
2. Find the Imposter
3. Do you speak Domain Language?

→ The Trap we Built

Method 1: The sound of code?

Sonofication of Code

- Does the code tell a story?
- Is the story the same of the business/domain?
- Does the code sound wrong?

Method 1: The sound of code?

1. Underline self-named words

interface ThingArgs {

 thing: {

 isOn: boolean;

 onClick: () => void; // will set isOn to true

 };

}

export class ThingComponent extends Component<ThingArgs> {

 @action

 onClick(): void {

 this.args.thing.onClick();

 }

 static template = hbs`

 <Icon @icon={{this.thing.isOn}} />

 <Button @onClick={{this.onClick}}>

 on

 </Button>

 `;

}

Method 1: The sound of code?

1. Underline self-named words
Thing
onClick
isOn

interface ThingArgs {

 thing: {

 isOn: boolean;

 onClick: () => void; // will set isOn to true

 };

}

export class ThingComponent extends Component<ThingArgs> {

 @action

 onClick(): void {

 this.args.thing.onClick();

 }

 static template = hbs`

 <Icon @icon={{this.thing.isOn}} />

 <Button @onClick={{this.onClick}}>

 on

 </Button>

 `;

}

Method 1: The sound of code?

1. Underline self-named words
Thing
onClick
isOn

2. Connect the words in code
execution order to tell a story:

interface ThingArgs {

 thing: {

 isOn: boolean;

 onClick: () => void; // will set isOn to true

 };

}

export class ThingComponent extends Component<ThingArgs> {

 @action

 onClick(): void {

 this.args.thing.onClick();

 }

 static template = hbs`

 <Icon @icon={{this.thing.isOn}} />

 <Button @onClick={{this.onClick}}>

 on

 </Button>

 `;

}

onClick the button to onClick
the thing to be isOn

Method 1: The sound of code?

1. Underline self-named words
Thing
onClick
isOn

2. Connect the words in code
execution order to tell a story:

3. Find the Action:

interface ThingArgs {

 thing: {

 isOn: boolean;

 onClick: () => void; // will set isOn to true

 };

}

export class ThingComponent extends Component<ThingArgs> {

 @action

 onClick(): void {

 this.args.thing.onClick();

 }

 static template = hbs`

 <Icon @icon={{this.thing.isOn}} />

 <Button @onClick={{this.onClick}}>

 on

 </Button>

 `;

}

onClick the button to onClick
the thing to be isOn

Method 1: The sound of code?

3. The Action:

<Button @onClick={{this.onClick}}>

Method 1: The sound of code?

3. The Action:

4. Reverse Engineer code into User Story:

<Button @onClick={{this.onClick}}>

As a…
User

I want to…
onClick a button

So that…
I can onClick

Method 2: Find the Imposter

Verbs…

- Are the actions/instructions into a system
- Are questions to ask for facts about the system

Commands

requestNounTermination()
sellNoun()
purchaseNoun()

Queries

whichNounMethod()
isNounAvailable()
canPurchase(noun)

= Command-Query-Separation (C-Q-S)

Method 2: Find the Imposter

● Are your actions … commanding?
● Are your questions…. asked?

interface ThingArgs {

 thing: {

 isOn: boolean;

 onClick: () => void; // will set isOn to true

 };

}

export class ThingComponent extends Component<ThingArgs> {

 @action

 onClick(): void {

 this.args.thing.onClick();

 }

 static template = hbs`

 <Icon @icon={{this.thing.isOn}} />

 <Button @onClick={{this.onClick}}>

 on

 </Button>

 `;

}

✅
❌
❌

Thing
onClick
isOn

- Turn code into prose
- Actions are the verbs in your sentence
- Grammar: Subject verb object.

Are your Actions … commanding?

onClick the button to onClick
the thing to be isOn

Are your Actions … commanding?

class Customer {

 payWithCreditCard(thing) {

 // pay here

 }

}

- Sound: Customers pays (for) a thing.
- As Question: Can a customer pay (for) a thing?

Are your Actions … commanding?

class Customer {

 onPayWithCreditCard(thing) {

 // pay here

 }

}

- Sound: Customers on (for) a thing.
- As Question: Can a customer on (for) a thing?

! THIS SENTENCE NO VERB !

onVerbNoun

… wants to be command, “does” on

Are your Questions … asked?

if (hasPotatoes) {
 // what is true here?
}

“When you go to the supermarket,
can you bring 5 eggs and if they

have potatoes can you bring 10?”

Jack. 32.

A 10eggs developer

Are your Questions … asked?

let eggs = 5;

if (hasPotatoes) {
 eggs = 10
}

Question known: hasPotatoes

Question asked: hasPotatoes()

Verbs vs. Facts

- The answer of a question is a fact about the system
- Facts are for conditions

const potatoesAvailable = hasPotatoes();

if (potatoesAvailable) {

}

Computed Facts

class Supermarket {
 get potatoesAvailable() {
 return this.potatoes.length > 0;
 }
}

Imposter Facts or Questions?

class Supermarket {
 get hasPotatoes() {
 return this.potatoes.length > 0;
 }
}

get verbNoun()

… wants to be a fact, masked as a question
… wants to be a question, masked as a fact

Where is this coming from?

Do we transport the <element onclick=””> into dev-lish?

Hungarian Notation?

- bNoun → isNoun, hasNoun
- fnVerb → onVerb

The Hungarian Notation of Frontend?

Method 3: Do you Speak Domain Language?

- How we use our favorite verbs?
- What stories do we tell?

Method 3: Do you Speak Domain Language?
CRUD

CREATE
READ
UPDATE
DELETE

“You can’t tell a bedtime story with only the verbs create, read, update and delete” (Golo Roden)

Roden, G. (2022a)

Once upon a time, there was a king and queen who wished themselves a
daughter. Their wish came true and a princess was created. One day, that
princess updated her location to the big dark forest and retrieved there is a big
grey wolf. In an assault the big grey wolf updated the isDeleted flag of the princess
to true. King and queen updated their profileStatus to sad. The king also updated
the hunters location to the big dark forest and the task to delete the big grey wolf.
The brave hunter deleted the big grey wolf and updated the isDeleted flag of the
princess to false.

And if they haven’t been deleted, they lived happily ever after…

POST
GET
PUT/PATCH
DELETE

Method 3: Do you Speak Domain Language?
REST

click
mouseDown
touchStart
…

Method 3: Do you Speak Domain Language?
Frontend

Developers: Our verbs…

→ Technical Language

POST
GET
PUT/PATCH
DELETE

click
mouseDown
touchStart
…

CREATE
READ
UPDATE
DELETE

Which feature is this?

click → POST → CREATE

- Trap:
- The sound we onCreate
- The imposters we onAccept
- The technical language we onUse

The Trap we Built…

- Discussion:
- Shall sound more “natural”
- Faster
- Focus the uninteresting parts
- Avoids thinking
- We think in the grammar of the programming language
- (Sometimes) prevent us from thinking in facts, questions and actions

Part III

How to communicate clearly :)

1. Use English
2. Translate from Technical to Domain Language
3. Becoming a Product-Minded Software Engineer

Use English: Asking Questions vs. Checking Facts

❌

✅

✅

if (hasPotatoes) {

}

if (hasPotatoes()) {

}

if (potatoesAvailable) {

}

Use English: Computed Facts

❌

✅

class Supermarket {
 get hasPotatoes() {
 return this.potatoes.length > 0;
 }
}

class Supermarket {
 get potatoesAvailable() {
 return this.potatoes.length > 0;
 }
}

Use English: Ask your Questions

{{! with octane }}

{{#if (can "buy potatoes")}}

 ... something about potatoes

{{/if}}

// with polaris

import { canBuyPotatoes } 'supermarket-logic';

<template>

 {{#if (canBuyPotatoes)}}

 ... something about potatoes

 {{/if}}

</template>

Use English: Active Verbs for Actions

❌

✅

class Supermarket {
 get onProceedPayment() {
 return this.potatoes.length > 0;
 }
}

class Supermarket {
 get pay() {
 return this.potatoes.length > 0;
 }
}

CRUD REST DOM Events

Translate from Technical to Domain Language

→ Repository
→ Event Sourcing

→ only GET and POST
→ GraphQL
→ Sockets

→ ?

Roden, G. (2022b)

Translate from Technical to Domain Language

{{! components/button.hbs }}

<button type="button" {{on "click" @push}}>

 {{yield}}

</button>

Technical Name Domain Name

<Mailbox>

 <Mail {{swipe "left" this.delete}}></Mail>

</Mailbox>

Translate from Technical to Domain Language

As a…
User

I want to…
push a button

So that…
I can turn on the lights

As a…
User

I want to…
onClick a button

So that…
I can onClick

<Button

 @onClick={{this.onClick}}

>

<Button

 @push={{this.turnOnTheLights}}

>

Technical Proxy Methods

<form {{on "submit" this.submit}}>

 {{! some fields }}

</form>

export class NounComponent extends Component {

 @action

 submit(event: SubmitEvent) {

 // collect data

 const data = new FormData(event.currentTarget);

 // pass this off to business logic

 this.pay(data);

 }

}

Becoming a Product-Minded Software Engineer

❌ DON’T

- Assimilate with technical language
- Use dev-lish
- Name properties, getters, methods, etc.

✅ DO

- Adapt domain language
- Use english
- Practice naming questions, actions and facts

(consciously)
- Revise prose (treat your code like a blog

article)

- Extract Business Logic from Components
- Components glue UI and business logic

together
- Unit Test your business logic
- Write business logic once, connect it from

multiple components

Orosz, G. (2019)

Becoming a Product-Minded Software Engineer

- Improve your Naming Skills
- Make an inventory of your ubiquitous language

- Aggregates, Entities, Value Objects
- Actions/Commands, Questions and Facts
- In collaboration with designers (eg. OOUX)
- In collaboration with domain experts (eg. Event storming)
- Practice Domain-driven Design
- => The vocabulary of your team

- Culture your Domain
- Better communication with designer, product and qa departments
- Validate product features and operations

Gossmann, T. (2021)

References

- Gossmann, T. (2021). The Hidden Skill and Art of Naming Things.
https://gos.si/blog/the-hidden-skill-and-art-of-naming-things/.

- Orosz, G. (2019). The Product-Minded Software Engineer.
https://blog.pragmaticengineer.com/the-product-minded-engineer.

- Pavlutin, D. (2019). Coding like Shakespeare: Practical Function Naming Conventions.
https://dmitripavlutin.com/coding-like-shakespeare-practical-function-naming-conventions/.

- Roden, G. (2022a). CRUD? Bloß nicht! // deutsch.
https://www.youtube.com/watch?v=MoWynuslbBY.

- Roden, G. (2022b). HTTP-Statuscodes: Alle benutzen sie falsch?! // deutsch.
https://www.youtube.com/watch?v=2ZOFCl3E-_c

- Yegge, S. (2006). Execution in the Kingdom of Nouns.
https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html.

https://gos.si/blog/the-hidden-skill-and-art-of-naming-things/
https://blog.pragmaticengineer.com/the-product-minded-engineer
https://dmitripavlutin.com/coding-like-shakespeare-practical-function-naming-conventions/
https://www.youtube.com/watch?v=MoWynuslbBY
https://www.youtube.com/watch?v=2ZOFCl3E-_c
https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

Thank you!

