Kafka without Zookeeper

@gamussa | @confluentinc

@gamussa | #JPoint | @confluentinc

Y gamov.dev/twitter
Y gamov.dev/telegram

Y gamov.dev/youtube

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e Brief history of Kaftka

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e What's Zookeeper?

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e What Does it Do:

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e For clients

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e For brokers

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e Brave New World - without Zookeeper

@gamussa | #JPoint | @confluentinc

Agenda

What we are going to talk about

e Demo &

@gamussa | #JPoint | @confluentinc

Kaftka Past and Future

@gamussa | #JPoint | @confluentinc

replication

@gamussa | #JPoint | @confluentinc

Kafka / KAFKA-50
kafka intra-cluster replication support

v Details
Type: ES New Feature Status: ' RESOLVED
Priority: ~~ Major Resolution: Fixed
Affects Version/s: None Fix Version/s: 0.8.0
Component/s: None
Labels: None

v Description

Currently, Kafka doesn't have replication. Each log segment is stored in a single broker. This limits both the availability
and the durability of Kafka. If a broker goes down, all log segments stored on that broker become unavailable to
consumers. If a broker dies permanently (e.g., disk failure), all unconsumed data on that node is lost forever. Our goal is
to replicate every log segment to multiple broker nodes to improve both the availability and the durability.

We'd like to support the following in Kafka replication:

1. Configurable synchronous and asynchronous replication

2. Small unavailable window (e.g., less than 5 seconds) during broker failures

3. Auto recovery when a failed broker rejoins

4. Balanced load when a broker fails (i.e., the load on the failed broker is evenly spread among multiple surviving
brokers)

Here is a complete design proposal for Kafka replication -
Sesn e e e e e e [@gamussa s | FdEoint s -@ct

Kafka Connect

Kafka has become a tremendously popular system to enable streaming data flow between
external systems to unlock data siloes and to exchange data in real-time. And indeed the open
source community has written numerous connectors, such as Camus, to integrate Kafka with
other systems. But unfortunately for users every such integration tool looks very different, and
most don't attempt to solve all the problems that need to be addressed for reliable large-scale
data ingestion. Users have been forced to understand and operate many different one-off
integration tools as their data infrastructure and systems proliferate. Furthermore, many of
these one-off tools do not offer high availability or adequate scalability. This presents difficulties
for the adoption of Kafka for data integration purposes. To address this situation, Kafka 0.9
adds support for a new feature called Kafka Connect (those who follow the open source

discussions closely might have heard it by it's working name “Copycat”).

59 Karra Connect

= Data
ey A tn k

v
Kl Conned J
nyy
AN
3
|K0“!0~ Com\utJ
t,

@gamussa | #JPoint | @confluentinc

Introducing Kafka Streams: Stream
Processing Made Simple

[
a JAY KREPS =)

84

MARCH 10, 2016

I'm really excited to announce a major new feature in Apache Kafka v0.10: Kafka's Streams API.
The Streams API, available as a Java library that is part of the official Kafka project, is the
easiest way to write mission-critical, real-time applications and microservices with all the

benefits of Kafka's server-side cluster technology.

The latest documentation on Apache Kafka's Streams APl is always available at https://kafka.apache.org/

documentation/streams/

A stream processing application built with Kafka Streams looks like this:

import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;

import org.apache.kafka.streams.StreamsConfig;

import org.apache.kafka.streams.kstream.KStream;

import org.apache.kafka.streams.kstream.KStreamBuilder;

import org.apache.kafka.streams.kstream.KTable;

2+ Follow

g Mathias Verraes
) @mathiasverraes
There are only two hard problems in distributed
systems: 2. Exactly-once delivery 1.
Guaranteed order of messages 2. Exactly-once
delivery

RETWEETS LIKES
6,775 4,727

£ "%_ { " —
sl gEEa
. SR " i

10:40 AM - 14 Aug 2015

¥ 47K |

@gamussa | #JPoint | @confluentinc

exactly once

@gamussa | #JPoint | @confluentinc

Dashboard / Index / Kafka Improvement Proposals

KIP-129: Streams Exactly-Once Semantics

Created by Guozhang Wang, last modified by Matthias J. Sax on Mar 30, 2017

e Status
e Motivation
e Summary of Guarantees
e Proposed Changes
e Transactionally committing a task
e Uncleanly shutting down a task
e Better handling runtime errors
e Compatibility, Deprecation, and Migration Plan
e Rejected Alternatives

Status

Current state: Accepted: [VOTE] KIP-129: Kafka Streams Exactly-Once Semar “ics
Discussion thread: [DISCUSS] KIP-129: Kafka Si eams F ..°ctly -On e ¢ 2manti s
JIRA: KAFHKA—4923 - Add Exactly-Once Semantics to Streams RESOLVED

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

KIP-98 added the following capabilities to Apache Kafka

1. An ldempotent Producer based on producer identifiers (PIDs) to eliminate duplicates.
2. Cross-partition transactions for writes and offset commits
3. Consumer support for fetching only committed messages

This proposal makes use of these capabilities to strengthen the semantics of Kafka's streams api for stream processing.

The critical question for a stream processing system is "does my stream processing application get the right answer, even if one of the instances crashes in the middle of
processing?". The challenge in ensuring this is resuming the work being carried out by the failed instances in exactly the same state as before the crash.

A simple example of this in Kafka land would be a stream processor which took input from some topic, transformed it, and produced output to a new output topic. In this case
"getting the right answer" means neither missing any inpul m=ssza2s o producirg eryy d iplicate wutnut. Tois 15 of1en called "exactly once semantics" or "exactly once delivery".

HOME OVERVIEW QUICKSTART DISTRIBUTIONS EXAMPLES DOCS NEWS & COMMUNITY) L

ksqlDB

The event streaming database purpose-built for
stream processing applications. Announcing ksqlDB 0.11.0

The Curious Incident of the State
Store in Recovery in ksqlDB

I've got the Key, I've Got the
Secret. Here's How Keys Work in
ksqlDB 0.10.0

GET STARTED () GET THE CODE

Real, real-time Kafka-native What, not how

Build applications that respond immediately to events. Seamlessly leverage your existing Apache Kafka® Use a familiar, lightweight syntax to pack a powerful
Craft materialized views over streams. Receive real- infrastructure to deploy stream-processing workloads punch. Capture, process, and serve queries using only
time push updates, or pull current state on demand. and bring powerful new capabilities to your SQL. No other languages or services are required.

applications.

@gamussa | #JPoint | @confluentinc

KIP 500

@gamussa | #JPoint | @confluentinc

Dashboard / Index / Kafka Improvement Proposals

KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum

Created by Colin McCabe, last modified on Jul 09, 2020

e Status
e Motivation
e Metadata as an Event Log
e Simpler Deployment and Configuration
e Architecture
e [ntroduction
e QOverview
e The Controller Quorum
e Broker Metadata Management
e The Broker State Machine
e Broker States
e Offline
e Fenced
e Online
e Stopping
e Transitioning some existing APIs to Controller-Only
e New Controller APIs
e Removing Direct ZooKeeper Access from Tools
e Compatibility, Deprecation, and Migration Plan
e Client Compatibility
e Bridge Release
e Rolling Upgrade
e Upgrade to the Bridge Release
e Start the Controller Quorum Nodes
e Roll the Broker Nodes
e Roll the Controller Quorum
e Rejected Alternatives
e Pluggable Consensus
e Follow-on Work
e References

KIP-455: Create an Administrative API for Replica Reassignment

KIP-497: Add inter-broker APl to alter ISR

KIP-543: Expand ConfigCommand's non-ZK functionality

KIP-555: Deprecate Direct Zookeeper access in Kafka Administrative Tools
KIP-589: Add API to update Replica state in Controller

KIP-590: Redirect Zookeeper Mutation Protocols to The Controller
KIP-595: A Raft Protocol for the Metadata Quorum

KIP-631: The Quorum-based Kaftka Controller

@gamussa | #JPoint | @confluentinc

How Kaftka uses ZooKeeper

@gamussa | #JPoint | @confluentinc

Clients

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

I\ |

@gamussa | #JPoint | @confluentinc

producer
consumer
streams
connect

)|\t

@gamussa | #JPoint | @confluentinc

I\ |

admin client

@gamussa | #JPoint | @confluentinc

I\ |

admin client
/bin tools

@gamussa | #JPoint | @confluentinc

I\ |

quota management
replica reassignment

admin client
/bin tools

@gamussa | #JPoint | @confluentinc

& Confluence Spaces v People Create -

% Dashboard / Index / Kafka Improvement Proposals & <% 2 Jira links
KIP-455: Create an Administrative API for Replica Reassignment
@ Created by Colin McCabe, last modified on Mar 09, 2020
? Status
E Current state: accepted

Discussion thread: here

JIRA: KAFKA-8345 - Create an Administrative API for Replica Reassignment RESOLVED

Release: controller-side changes in 2.4, command line changes in 2.6

Motivation

Currently, users initiate replica reassignment by writing directly to a ZooKeeper node named /admin/reassign_partitions.

As explained in KIP-4, ZooKeeper based APIs have many problems. For example, there is no way to return a helpful error code if an invalid partition is proposed. Adding new features over time is difficult wh
ZooKeeper-based APIs inherently lack security and auditability.

In addition to all the general problems of ZK-based APIs, the current reassignment interface has some problems specific to its particular structure. There is no mechanism provided for aborting a reassignm
operations are launched as a batch - there is no way to incrementally add a new reassignment operation once the batch has been initiated.

We would like to provide a well-supported AdminClient API that does not suffer from these problems. Namely, it should support incremental replica reassignments and cancellation (revert) of ongoing reassi
This API can be used as a foundation on which to build future improvements.

Public Interfaces
AdminClient APls

We will add two new admin APIs: alterPartitionAssignments, and listPartitionReassignments. As the names imply, the alter API modifies partition reassignments, and the list API lists the ones which are ongoi

Unlike the current ZooKeeper-based API, alterPartitionAssignments can add or remove partition reassignments without interrupting unrelated assignments that are in progress. Partition reassignments can |
"after" snapshots.

/**
* Change the reassignments for one or more partitions.
* Providing an empty Optional (e.g via {@link Optional#empty()}) will <bold>cancel</bold> the reassignment for the associated partition.

*

* (@param reassignments The reassignments to add, modify, or remove.
* @param options The options to use.

* @return The result.

o

public AlterPartitionReassignmentsResult alterPartitionReassignments (
Map<TopicPartition, Opticnal<NewPartitionReassignment>> reassignments

@gamussa’ | FJFEUINIL | @CUriweriuric

& Confluence Spaces v People Create

§g Dashboard / Index / Kafka Improvement Proposals &
KIP-546: Add Client Quota APIs to the Admin Client
@ Created by Brian Byrne, last modified by Colin McCabe on Apr 09, 2020
b b e Status
e Motivation
(4 » Background
e APIs
% e Types Rationale

Public Interfaces
e Common types in package org.apache.kafka.common.quota
DescribeClientQuotas
ResolveClientQuotas:
AlterClientQuotas
kafka-client-quotas.sh/ClientQuotasCommand
o Flags
e Input
e Output
e Proposed Changes
o DescribeClientQuotas
o ResolveClientQuotas
e AlterClientQuotas
o Kafka RPC 'double’ support
o Compatibility, Deprecation, and Migration Plan
e Rejected Alternatives

Status

Current state: Accepted
Discussion thread: here
JIRA: KAFKA-7740

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Quota management via Admin Client has gone through a couple drafts of proposals (KIP-248, KIP-422). While improvements have been made to the Admin interface for configuration handling, fitting quotas into the API
output expressive enough to return all useful information. Therefore, it'd be beneficial to have a quota-native API for managing quotas, which would offer an intuitive and less error-prone interface, convey additional info
extensibility as quotas types are added or evolved.

Background

By default, quotas are defined in terms of a user and client ID, where the user acts as an opaque principal name, and the client ID as a generic group identifier. When setting quotas, an administrator has flexibility in how
client ID may be specifically named, indicated as a default, or omitted entirely. Since quotas have flexible configurations, there is a method for resolving the quotas that apply to a request: a hierarchy structure is used, w

Q ~liant 1IN
@ydiriussd | #JFUINIt | @euniwerntric

i & Confluence Spaces v People Create

§g Dashboard / Index / Kafka Improvement Proposals &
KIP-555: Deprecate Direct Zookeeper access in Kafka Administrative Tools

@ Created by Colin McCabe, last modified by Boyang Chen 4 minutes ago
b e Master KIP

e Status
(4 « Motivation

e Public Interfaces
% e Proposed Changes

o Compatibility, Deprecation, and Migration Plan
e Rejected Alternatives

Master KIP

KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum (Accepted)

Status

Current state: Accepted
Discussion thread:

JIRA: KAFKA-9397

Motivation

As part of KIP-500, we would like to remove direct ZooKeeper access from the Kafka Administrative tools. We have many motivations for doing this. It improves security, decouples the server-side nr

Before we can remove the --zookeeper flag from these tools, however, we need to first deprecate it. This KIP is about that deprecation process.

Public Interfaces

Command Name Status Changes Needed
kafka-acls.sh Does not support --zookeeper none
kafka-broker-api-versions.sh Does not support --zookeeper none
kafka-configs.sh Supports both --zookeeper and --bootstrap-server deprecate --zookeeper
kafka-consumer-groups.sh Does not support --zookeeper none
kafka-delegation-tokens.sh Does not support --zookeeper none
kafka-delete-records.sh Does not support --zookeeper none
kafka-dump-log.sh Does not support --zookeeper none

4 kafka-leader-election.sh Supports both --zookeeper and --bootstrap-server, but --zookeeper is already deprecated none

@ydiriussd | #JFUINit | @eurniierntric

Brokers

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

SR changes
event notifications
broker registration

@gamussa | #JPoint | @confluentinc

& Confluence Spaces v People Create

Dashboard / Index / Kafka Improvement Proposals & <% 1Jira link

KIP-497: Add inter-broker API to alter ISR

@ Created by Jason Gustafson, last modified by Boyang Chen on Apr 16, 2020
bb) Master KIP
e Status
[» Motivation
e Public Interfaces
% e Proposed Changes

o Compatibility, Deprecation, and Migration Plan
¢ Rejected Alternatives

Master KIP

KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum (Accepted)

Status

Current state: Adopted
Discussion thread: here
JIRA: KAFKA-8836 - Add inter-broker protocol to alter ISR OPEN

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Leader and ISR information is stored in the " /brokers/topics/[topic]/partitions/[partitionld]/state” znode. It can be modified by both the controller and the current leader in the following circumstances:

1. The controller creates the initial Leader and ISR on topic creation

2. The controller can shrink the ISR as part of a controlled shutdown or replica reassignment
3. The controller can elect new leaders at any time (e.g. preferred leader election)

4. Leaders can expand or shrink the ISR as followers come in and out of sync.

Since the znode can be modified by both the controller and partition leaders, care must be taken to protect updates. We use the zkVersion of the corresponding znode to protect updates, which means we need ar
controllers propagate the zkVersion to leaders through the LeaderAndIsr request. Leaders, on the other hand, propagate the zkVersion to the controller by creating a sequential notification znode that the controller
minute), which means Metadata is typically a bit slow to reflect ISR changes made by the leader.

In this KIP, we propose a new Alterlsr API to replace the notification znode in order to give the controller the exclusive ability to update Leader and ISR state. Leaders will use this APl to request an ISR change from t
controller will always have the latest Leader and ISR state for all partitions. Concretely, this has the following benefits:

It will not be possible for the controller to send stale metadata through the LeaderAndlsr and UpdateMetadata APIs. New requests will always reflect the latest state.

The controller can reject inconsistent leader and ISR changes. For example, if the controller sees a broker as offline, it can refuse to add it back to the ISR even though the leader still sees the follower fetchiny
When updating leader and ISR state, it won't be necessary to reinitialize current state (see KAFKA-8585). Preliminary testing shows this can cut controlled shutdown time down by as much as 40% (take this
Partition reassignments complete only when new replicas are added to the ISR. With this change, reassignments can complete sooner because the controller does not have to await change notification.

Below we discuss the behavior of the new API in more detail.

@ydiriussd | #JFUINIt | @euniwerntric

& Confluence Spaces v People Create

Dashboard / Index / Kafka Improvement Proposals &

KIP-589 Add API to update Replica state in Controller

E Created by David Arthur, last modified by Boyang Chen on Apr 16, 2020

% Master KIP

E KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum (Accepted)

& Status

Current state: Under Discussion
Discussion thread: here
JIRA: KAFKA-9837

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Currently, log dir failure notifications are sent from the broker to the controller using a ZooKeeper watch. When a broker has a log dir failure, it will write a znode under the path /log_dir_event
the controller reads the data from all the children to get a list of broker IDs which had log dir errors. A LeaderAndIsr request is sent to all the brokers which were found in the notification znodes. 2
then causes the controller to mark the replica as offline and to trigger a leader election. This procedure is describe in detail in the original design KIP-112.

For the KIP-500 bridge release (version 2.6.0 as of the time of this proposal), brokers will be allowed to read from ZooKeeper, but only the controller will be allowed to write. Since we will not be a

With this KIP, we propose to add a new RPC that allows a broker to directly communicate state changes of a replica to the controller. This will replace the ZooKeeper based notification for log dir 1
generic, it could also be used to mark a replicas a "online" following some kind of log dir recovery procedure (out of scope for this proposal).

Public Interfaces
We will add a new RPC named ReplicaStateEvent which requires CLUSTER_ACTION permissions

ReplicaStateEventRequest => BrokerId BrokerEpoch EventType EventReason [Topic [PartitionId LeaderEpoch]]
BrokerId => Int32
BrokerEpoch => Int64
EventType => Int32
EventReason => String
Topic => String
PartitionId => Int32
LeaderEpoch => Int32

ReplicaStateEventResponse => ErrorCode [Topic [PartitionId]]
ErrorCode => Int32
Topic => String
PartitionId => Int32

Dnaceilnla tAan_laval arrAare-

@ydiriussd | #JFUINIt | @euniwerntric

Client Compatibility

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

Createlopic

@gamussa | #JPoint | @confluentinc

Createlopic

@gamussa | #JPoint | @confluentinc

Createlopic

@gamussa | #JPoint | @confluentinc

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

»

& Confluence Spaces v People Create

Dashboard / Index / Kafka Improvement Proposals & <@ 1Jira link

KIP-590: Redirect Zookeeper Mutation Protocols to The Controller

Created by Boyang Chen, last modified on Apr 17, 2020

e Master KIP
e Status
e Motivation
e Proposed Changes
e Change AlterConfig Request Routing
¢ Internal CreateTopicsRequest Routing
¢ Routing Request Security
e Public Interfaces
e Protocol Bumps
e New Envelope RPC
o EnvelopeRequest Handling
e EnvelopeResponse Handling
e Monitoring Metrics
o Compatibility, Deprecation, and Migration Plan
o Rejected Alternatives
e Future Works

Master KIP

KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum (Accepted)

Status

Current state: Under Discussion
Discussion thread: here
JIRA: KAFKA-9705 - Zookeeper mutation protocols should be redirected to Controller only ©OPEN

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

As part of the KIP-500 initiative, we need to build a bridge release version of Kafka that could isolate the direct Zookeeper write access only to the controller. Protocols that alter cluster/topic configurations, securi
relying on arbitrary broker to Zookeeper write access.

Take config change protocol for example. The current AlterConfig request propagation path is:

1. The admin client issues an (Incremental)AlterConfig request to broker
2. Broker updates the zookeeper path storing the metadata

3. If #2 successful, returns to the client

4. All brokers refresh their metadata upon ZK notification

Here we use ZK as the persistent storage for all the config changes, and even some brokers are not able to get in sync with ZK due to transient failures, a successful update shall be eventually guaranteed. In this K
single writer to modify the config metadata in ZK.

35

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

AlterConfig

@gamussa | #JPoint | @confluentinc

KIP-500: Current State

@gamussa | #JPoint | @confluentinc

With ZooKeeper With Quorum
Controller

denotes quorum leader

@gamussa | #JPoint | @confluentinc

Metadata Quorum

@gamussa | #JPoint | @confluentinc

Kafka Quorum
Broker A Fgoiotie) =

‘\‘llll

Metadata Topic (Event Store)

Quorum Kafka
@0 ugellzo| BrokerB

Periodic Snapshot

@gamussa | #JPoint | @confluentinc

£ &
2
. &

@gamussa | #JPoint | @confluentinc

| eader
(Controller)

£ &
2
. &

@gamussa | #JPoint | @confluentinc

Follower

| eader
(Controller)

Gt
Gt

Follower

gt
Gt
gt

@gamussa | #JPoint | @confluentinc

Follower

| eader
(Controller)

Gt
Gt

Follower

gt
Gt
gt

Observers

@gamussa | #JPoint | @confluentinc

£ &
2
. &

@gamussa | #JPoint | @confluentinc

£ &
2
. &

Data Nodes Metadata Nodes

@gamussa | #JPoint | @confluentinc

Dedicated Deployment

£ &
2
. &

Data Nodes Metadata Nodes

@gamussa | #JPoint | @confluentinc

£ &
2
. &

Data Nodes Metadata Nodes

@gamussa | #JPoint | @confluentinc

g
2
. &

Data Nodes

@gamussa | #JPoint | @confluentinc

Data/Metadata
Nodes

@gamussa | #JPoint | @confluentinc

Mixed Deployment

Data/Metadata
Nodes

@gamussa | #JPoint | @confluentinc

Mixed Deployment

g
2
. &

@gamussa | #JPoint | @confluentinc

Mixed Deployment

g
2
. ¥

@gamussa | #JPoint | @confluentinc

Mixed Deployment

Observer
Promotion

@gamussa | #JPoint | @confluentinc

Mixed Deployment

Observer
Promotion

@gamussa | #JPoint | @confluentinc

g
2
. &

@gamussa | #JPoint | @confluentinc

Single Node Deployment

@gamussa | #JPoint | @confluentinc

Single Node Deployment

@gamussa | #JPoint | @confluentinc

Single Node Deployment

g
2
. &

@gamussa | #JPoint | @confluentinc

KRaft: Katkaesque Raft

@gamussa | #JPoint | @confluentinc

A Kafkaesque Raft Protocol

KIP-500 set the vision for Zookeeper-free Kafka. However, even without Zookeeper, the need for consensus never went away. In this
talk, we will discuss one of the core community's initiatives, a native Raft-like protocol used to ensure different brokers can agree on
critical pieces of metadata such as which replicas are available for writing (i.e. partition leaders). Specifically, we will cover the
following topics:

- Why did we abandon the external consensus and what benefits internal consensus provides.

- How this protocol is different from standard Raft, and the critical design trade-offs we made in its implementation.

- How the new Quorum Controller serves as the "Kafka control plane” and how it gets integrated with the Raft protocol

- What next steps we envisage for Kafka's replication protocol for metadata and beyond.

Speakers

Jason Gustafson

Engineer, Confluent Inc

https://www.kafka-summit.org/sessions/a-kafkaesque-raft-protocol

@gamussa | #JPoint | @confluentinc

Writes

Fencing

Log reconciliation
Push/Pull
Commit Semantics

Leader Election

Fault Tolerance

Kafka

Single Leader

Monotonically increasing
epoch

Offset and epoch
Pull

ISR

From ISR through
Zookeeper

F+1

Raft

Single Leader

Monotonically increasing
term

Term and index
Push
Majority

Majority

2F+1

@gamussa | #JPoint | @confluentinc

Timed Shutdown Operations In Apache Kafka with 2 Million Partitions
Faster is better

B With ZooKeeper ® With Quorum Controller

600 -
400 -+
n
©
-
@)
O
D
(0p)
200 -+
0

Controlled Shutdown Time Recovery Time after Uncontrolled Shutdown

STOP! Demo time!

@gamussa | #JPoint | @confluentinc

(%) CONFLUENT

Want to learn more about Kafka?

@gamussa | #JPoint | @confluentinc

Watch full version R\
https://gamov.dev/developer

op;

Learn Kafka.

Start building with =3 i
Apache Kafka at "J*.'_a.r."i‘:{'; -
Confluent Developer. [m] .

|

53'15- s

74

Confluent Developer
Dkr- 1l developer.confluent.io

As Always
Have A Nice Day

@gamussa @confluentinc

(%) CONFLUENT

