
With WasmEdge
to New Shores
Max Körbächer | Co-Founder & Cloud Native Advocate @ Liquid Reply

Photo

mkoerbaecher

mkoerbi

Say hi!

Max Körbächer - Co-Founder of Liquid Reply

My work is all about
Kubernetes Consultancy & Cloud Native Advisory

● Former Enterprise Architect, yet design and build hyper
converged infrastructures and cloud agnostic solutions

● Contributing to the Kubernetes release team, related K8s
technologies and Co-Chair of the CNCF Environmental
Sustainability Working Group

Docker/Container changed:
● the way we design and

build applications
● caused a whole ecosystem

with hundreds of open
source systems to appear

● drive adoption from all kind
of cloud provider

● changed the way we do
automation

● pushed the development of
an OCI standard

Docker has changed the game

93%
Corporations using or planning to use container

In Containers we trust in
Kubernetes we build

● Kubernetes leverages container and got a defacto standard for container
orchestration (also there are many other nice implementations)

● Kubernetes gets implemented and used everywhere (cloud, IaaS, on
metal, on egde) - it simplifies a lot, but it also raises the complexity

● In Europe >= 90% organizations
working with or on K8s - this is
comparable to the usage of
hypervisor (92%)

src: https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf
https://www.spiceworks.com/marketing/reports/state-of-virtualization/

https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf

Container & Kubernetes
Both together has changed and influenced the ICT world massively

A big bang for a total new
market

Security, observability, any
kind of extension is seen as

a simple plug & play

Boosting open source and a
community driven

development to new levels

K8s abstracts away
hypervisors, CSP and IaaS

Changed the way we see
infrastructure -> Infra as

Apps

K8s create a knowledge
voidness

What next?

src: https://twitter.com/solomonstre/status/1111004913222324225

What is WebAssembly (WASM)?

Intermediate Layer
Various programming
languages and many
different execution
environments
CPU & OS agnostic

Secure
Per default a WASM
component is allowed to
do nothing
Encapsulated binary, no
OS within, nothing to
“hack”

Fast(er)
Drastically short startup
time (x100 faster than a
container)
Micro footprint,
measured in MB not GB

A new paradigm (?)

Where can WebAssembly be
applied?

*outside the Browser

🪢
Language

Interoperability

🧩
Plugin Systems

🖼
Embedded

Sandboxing

📦
Containerisation

🧮
Serverless
Platforms

🔗
Blockchains

Never trust third
parties!

Envoy / Istio
Kubewarden

MS Flight Simulator
Minecraft

RedPanda

Write that library
once in a language
of your choice; use
in any language.

Figma
Lichess.org
Google Earth

Adobe Photoshop

Prevent yourself
against bugs of

third party libraries.

Firefox
HTTP Servers

Universal Runtime,
capability based
security model.

Krustlet
Hippo

wasmCloud
Lunatic

WasmEdge

Minimal Startup time,
maximal isolation.

Cloudflare Workers
AWS Lambda

Atmo (Suborbital)
Fastly Compute@Edge

Write Smart
Contracts in a

language of your
choice.

CosmWasm
eWASM

Example implementations

Kubernetes

Kubernetes API
Server

Node

Krustlet

Wasmtime

wasi

WASM Module

A Krustlet Kubernetes Stack

replace

require

require

Example implementations

Kubernetes

Kubernetes API
Server

Node

Krustlet

Wasmtime

wasi

WASM Module

A Krustlet Kubernetes Stack
co-run

Node
Kubelet

CRI Runtime
Docker CRI-O container-d …

OCI Runtime
crun runc gVisor …

Linux
Container
Images

Kubernetes
Kubernetes API Server

The Container Eco-System

WebAssembly
app images

Example implementations

Kubernetes

Kubernetes API
Server

Node

Krustlet

Wasmtime

wasi

WASM Module

A Krustlet Kubernetes Stack

Node
Kubelet

CRI Runtime
Docker CRI-O container-d …

OCI Runtime
crun runc gVisor …

Linux
Container
Images

Kubernetes
Kubernetes API Server

The Container Eco-System

WebAssembly
app images

wasmCloud Host
Runtime - VM

󰠼
Act
or
󰠼
Act
or󰠼
Actor

🤝
Capabilit

y
Provider

wasmCloud
Host
Runtime
Kubernetes

🕸
Lattice

…

new platform

Example implementations

Kubernetes

Kubernetes API
Server

Node

Krustlet

Wasmtime

wasi

WASM Module

A Krustlet Kubernetes Stack

Node
Kubelet

CRI Runtime
Docker CRI-O container-d …

OCI Runtime
crun runc gVisor …

Linux
Container
Images

Kubernetes
Kubernetes API Server

The Container Eco-System

WebAssembly
app images

wasmCloud Host
Runtime - VM

󰠼
Act
or
󰠼
Act
or󰠼
Actor

🤝
Capabilit

y
Provider

wasmCloud
Host
Runtime
Kubernetes

🕸
Lattice

…

● Especially targets the integration in various Kubernetes
distributions, CRI runtimes as well as OCI runtimes -
therefore a good match to run WASM side by side with
classic containers

● Runs also stand alone for modern web apps, to host
serverless functions and being “embedded” in any kind of
edge device.

● It leverages all advantages of WASM and bring it into a
strong ecosystem without being inversive

Let’s think about the WASM
potentials based on WasmEdge

Node
Kubelet

CRI Runtime
Docker CRI-O container-d …

OCI Runtime
crun runc gVisor …

Linux
Container
Images

Kubernetes
Kubernetes API Server

The Container Eco-System

WebAssembly
app images

WasmEdge

● Especially targets the integration in various Kubernetes
distributions, CRI runtimes as well as OCI runtimes - therefore a
good match to run WASM side by side with classic containers

● Runs also stand alone for modern web apps, to host serverless
functions and being “embedded” in any kind of edge device.

Integrating with existing tooling, and more …

Node

Kubelet

CRI Runtime

Docker CRI-O container-d …

OCI Runtime

crun runc gVisor …

Linux
Container
Images

Kubernetes

Kubernetes API Server

The Container Eco-System

WebAssembly
app images

based on: https://wasmedge.org/book/en/kubernetes.html

https://wasmedge.org/book/en/kubernetes.html

WasmEdge

WasmEdge is different on the image level. Rather than having a container image with a OS, the
WASM image is build from scratch. In addition, the container requires a “wasm.image”
annotation, to let crun and containerd know that it use WasmEdge.

This approach allows to use WASM within the Kubernetes context, and utilize the existing
ecosystem.

Solution Approach

*http server wasm image within a docker file

*a wasm container requires the wasm image annotation

Demo

WasmEdge

Considerations
➖ Additional tools for image annotation are required

(at the moment)
➖ For some use cases you need another SDK
➖ It can lead to confusion that you can use

WasmEdge in very different scenarios and each of
them has to be developed differently

Solution Approach

Advantages
➕ WasmEdge can run alongside your standard

containers
➕ Build and deployment spec are nearly the

same as for a normal pod
➕ Supports different CRI, OCI and K8s distros
➕ Can use existing K8s ecosystem
➕ Runs by itself on edge, serverless or browser

WasmEdge would be the best choice to extend your
currently orchestration without deep cutting changes

WASM can extend Container

Docker-like
container

WebAssembly

Performance OK Great

Resource
footprint

Poor Great

Isolation OK Great

Safety OK Great

Portability OK Great

Security OK Great

Language and
framework
choice

Great OK (yet)

Ease of use Great OK (yet)
Manageability Great Great

1

2

3

4

5

WebAssembly’s potential is
beyond the browser

WASM enables use cases
that are not possible with

container & K8s

WASM will not substitute
containers & K8s, but extend

it

WASM lacks harmonization
and makes it difficult for

programming languages to
adapt

The developer experience
of/for WASM will be the

game changer

Go with the Container flow

Containers will stay and drastically
increase in usage over the next years.

Build with WASM for the future

But for future developments WASM
might be in many cases a better choice.

Containers for lifting,
WASM for re-creating

We believe that WASM & Container will go along
side by side

⚡ Consistently fast 🔬 Small

🌍 Universal ♻ Reusable

🧸 Simple to use 🍀 Big eco-system

📱 Language support 👶 “1st born” effect

