
Making Things Better
@rachelandrew #aeadc

Redefining the technical
possibilities of CSS

“Tableless web design”
The move from tables to CSS for layout meant simplifying our designs.

What we see as good web
design is rooted in the
technical limitations of CSS2

How we see the web is still
informed by those early
days.

“The web is not print”

“[I] accepted that CSS is just hacks over
top of a document model that was never
designed to be used like it is today”
- Bailey Ling
http://bling.github.io/blog/2013/04/13/dot-net-slash-wpf-to-html-slash-css-slash-javscript/

We have solved many of
those problems
That doesn’t mean we got all of them!

You never know how tall
anything is on the web.

We hacked round the
problem

stretch
Default value of align-items.

.container {
display: flex;

}

The default behaviour of these
methods is the thing we
struggled with for so long.

How big is this box?

Graduating To Grid
https://aneventapart.com/news/post/graduating-to-grid-by-rachel-andrew-aea-video

<length-percentage>
Our previous layout systems rely on everything having a length, or a
percentage which resolves to a length.

“Flexbox is weird!”
- People on the internet.

Flexbox isn’t the layout
method you think it is.

Flexbox
I have a bunch of different

sized things to lay out.

Not everything requires a
CSS hack.
CSS may have solved your problem.

“it just blew my mind that someone
thought the default behavior should be to
just have the text honk right out of the box,
instead of just making the box bigger”
Steven Frank (creator of the meme)
- https://css-tricks.com/css-is-awesome/#comment-1609829

CSS tries to avoid data loss
In CSS terms that would mean making some content vanish.

Safe & Unsafe alignment
Giving you the choice about prioritizing alignment over potentially
vanishing content.

safe
Tells the browser to align start if

data loss would occur.

.container {
display: flex;
flex-direction: column;
align-items: safe center;

}

safe
Tells the browser to align start if

data loss would occur.

unsafe
I want my specified alignment even

if it causes data loss.

.container {
display: flex;
flex-direction: column;
align-items: unsafe center;

}

unsafe
I want my specified alignment even

if it causes data loss.

Overflow happens

Overflow
Choose your solution

min-content & max-content
Solving the “content honking out of the box” problem.

min-content
A box that is wide enough for the

content, but not wider.

.awesome {
width: min-content;

}

min-content
A box that is wide enough for the

content, but not wider.

max-content
A box that is as big as the content

can be.

.awesome {
width: max-content;

}

max-content
A box that is as big as the content

can be.

break-word
Breaking words, making the box

taller not wider.

.awesome {
overflow-wrap: break-word;

}

break-word
Breaking words, making the box

taller not wider.

Choices!
Choose your solution

vertical
CSS being awesome in

another dimension

The web is not left to right

Flexbox & Grid
Take an agnostic approach to the writing mode of the document.

grid-area
All four lines at once

.item {
grid-area: 1 1 4 2;

}

Floats, positioning, margins,
borders, padding
All defined using physical terms – top, left, bottom, right

Logical Properties & Values
https://www.w3.org/TR/css-logical-1/

width

writing-mode
Change the writing mode of a

document or a component.

.container {
display: grid;
grid-template-columns:

100px 100px 300px;
grid-gap: 10px;
width: 700px;
writing-mode: vertical-rl;

}

width

inline-size
Maps to width when horizontal and

height when vertical

.container {
display: grid;
grid-template-columns:

100px 100px 300px;
grid-gap: 10px;
inline-size: 700px;
writing-mode: vertical-rl;

}

inline-size

inline-size
Be awesome in both dimensions

without changing the code.

.awesome {
inline-size: min-content;

}

Solutions need to include
different writing modes
We’re not in the business of making things better only for a top to bottom,
left to right web.

There is
no fold

Drew McLellan @media 2007

We know where the fold is

Viewport Units
Representing the height and width of the current viewport

100vw
100% of the viewport width

100vh
100% of the viewport height

Viewport
Units

Two rows plus gap = 100vh

.grid {
display: grid;
grid-gap: 2vh;
grid-template-columns:
5vw 1fr 1fr 5vw 5vw 1fr 1fr 5vw;

grid-template-rows:
60vh 38vh 49vh 49vh 49vh 49vh;

}

CSS Scroll
Snap

https://www.w3.org/TR/css-scroll-snap-1/

.grid {
display: grid;
scroll-snap-type: y mandatory;
overflow-y: scroll;
height: 100vh;

}

.a {
grid-column: 2 / 5;
grid-row: 1 ;
scroll-snap-align: start;

}

Paged vs Continuous Media

Grid & Subgrid
What next for Grid Layout?

Nesting
grids

A grid item can become a grid.

.box {
display: grid;
grid-template-rows: 1fr auto;

}

.box img {
height: 100%;
width: 100%;
object-fit: cover;
grid-row: 1 / 3;
grid-column: 1;

}

You never know how tall
anything is on the web.

My
document

A container with two direct children

<div class="container">

...
...
...

<div class="item">...</div>

</div>

display: grid
Causes direct children to become

grid items.

.container {
display: grid;
grid-template-columns:
1fr 1fr 1fr;

grid-gap: 10px;
}

display: contents

Remove a box from the visual
display allowing grandchildren to

act like direct children.

ul {
display: contents;

}

subgrid

The nested grid should use the
tracks defined on the parent.

ul {
grid-column: 1 / -1;
display: grid;
grid-template-columns:subgrid;

}

Nested grid
.box is a grid item that is also a

grid container.

.grid {
display: grid;
grid-auto-rows: 300px min-

content;
}

.box {
display: grid;
grid-row: auto / span 2;
grid-template-rows: 1fr auto;

}

.box img {
height: 100%;
width: 100%;
object-fit: cover;
grid-row: 1 / -1;
grid-column: 1;

}

subgrid
.box still has two rows but takes

the size from the parent.

.grid {
display: grid;
grid-auto-rows: 300px min-

content;
}

.box {
display: grid;
grid-row: auto / span 2;
grid-template-rows: subgrid;

}

.box img {
height: 100%;
width: 100%;
object-fit: cover;
grid-row: 1 / -1;
grid-column: 1;

}

Subgrid
Level two of the Grid spec. In Firefox Nightly.

Subgrid in Chrome?
Star this:
https://bugs.chromium.org/p/chromium/issues/detail?id=618969

https://bugs.chromium.org/p/chromium/issues/detail?id=618969

You will hit problems. Find
new technical limitations.

We just can’t do that yet.

We get the new stuff when
we create it.

Finding the edges

You don’t know how tall
things are on the web

Overflow and Multicol

Overflow in the Block
Dimension
Something for Multiple-column Layout level 2?

Paged Media
CSS – not just for web browsers.

Pages have
defined size

All defined in CSS.

@page {
size: 5.5in 8.5in;
margin: 70pt 60pt 70pt;

}

Margin
boxes

Content can be added to the
margins – page numbers, titles.

@page:right{
@bottom-right {
margin: 10pt 0 30pt 0;
border-top: .25pt solid #666;
content: counter(page);
font-size: 9pt;

}

@top-right {
content: string(doctitle);
margin: 30pt 0 10pt 0;
font-size: 9pt;
color: #333;

}
}

Paged Contexts
Take content and flow it through as many pages as are required to display
all of the content.

CSS Regions
A problematic attempt to flow content through disconnected boxes.

CSS Regions
IE / Edge implementation flows

content from a iframe.

#content {
-ms-flow-into: content;
}

.region {
-ms-flow-from: content;
}

Regions needs ready-
prepared boxes
You need to know exactly how much content you have.

Having a final “bucket” for
extra content is not enough.

Dealing with overflow
Because we never really know how big anything is on the web.

Web design has always
involved this battle with
overflow.

Perhaps Regions paved the
way for something better.

Content thread and
semantics fully separate
from layout.
Without needing to simplify the design to get there.

Fragmentation
How does content break between pages, columns or regions?

Fragmentation

Breaks between and inside boxes.

figure {
break-inside: avoid;

}

h1 {
break-before: column;

}

h2, h3 {
break-after: avoid;

}

We create new things to
solve problems

Show your problems
This is how we make things better.

Why can’t I do that?

“At a W3C meeting or standards
discussion, the room should not
be 60–70% Googlers.”
https://ferdychristant.com/the-state-of-web-browsers-f5a83a41c1cb

“At a W3C meeting or standards
discussion, the room should not
be 60–70% Googlers.”
- Ferdy Christant
https://ferdychristant.com/the-state-of-web-browsers-f5a83a41c1cb

More than ever the web
needs diversity of thought.

Thank you
@rachelandrew

	Making Things Better
	Redefining the technical possibilities of CSS
	“Tableless web design”
	Slide Number 5
	What we see as good web design is rooted in the technical limitations of CSS2
	How we see the web is still informed by those early days.
	“The web is not print”
	“[I] accepted that CSS is just hacks over top of a document model that was never designed to be used like it is today”
	We have solved many of those problems
	You never know how tall anything is on the web.
	Slide Number 12
	Slide Number 13
	Slide Number 14
	We hacked round the problem
	stretch
	The default behaviour of these methods is the thing we struggled with for so long.
	How big is this box?
	Slide Number 19
	Graduating To Grid
	<length-percentage>
	“Flexbox is weird!”
	Flexbox isn’t the layout method you think it is.
	Flexbox
	Slide Number 25
	Not everything requires a CSS hack.
	“it just blew my mind that someone thought the default behavior should be to just have the text honk right out of the box, instead of just making the box bigger”
	CSS tries to avoid data loss
	Safe & Unsafe alignment
	safe
	safe
	unsafe
	unsafe
	Overflow happens
	Overflow
	min-content & max-content
	min-content
	min-content
	max-content
	max-content
	break-word
	break-word
	Choices!
	vertical
	The web is not left to right
	Flexbox & Grid
	grid-area
	Floats, positioning, margins, borders, padding
	Logical Properties & Values
	Slide Number 50
	writing-mode
	Slide Number 52
	inline-size
	Slide Number 54
	inline-size
	Slide Number 56
	Slide Number 57
	Solutions need to include different writing modes
	There is �no fold
	We know where the fold is
	Viewport Units
	100vw
	100vh
	Slide Number 64
	Viewport Units
	Slide Number 66
	CSS Scroll Snap
	Paged vs Continuous Media
	Grid & Subgrid
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Nesting grids
	Slide Number 74
	You never know how tall anything is on the web.
	My document
	Slide Number 77
	display: grid
	Slide Number 79
	display: contents
	Slide Number 81
	subgrid
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Nested grid
	subgrid
	Slide Number 88
	Subgrid
	Subgrid in Chrome?
	Slide Number 91
	You will hit problems. Find new technical limitations.
	We just can’t do that yet.
	We get the new stuff when we create it.
	Finding the edges
	Slide Number 96
	Slide Number 97
	Slide Number 98
	You don’t know how tall things are on the web
	Overflow and Multicol
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Overflow in the Block Dimension
	Slide Number 105
	Slide Number 106
	Paged Media
	Slide Number 108
	Slide Number 109
	Pages have defined size
	Margin boxes
	Slide Number 112
	Paged Contexts
	CSS Regions
	Slide Number 115
	Slide Number 116
	CSS Regions
	Slide Number 118
	Regions needs ready-prepared boxes
	Having a final “bucket” for extra content is not enough.
	Slide Number 121
	Dealing with overflow
	Web design has always involved this battle with overflow.
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Perhaps Regions paved the way for something better.
	Slide Number 129
	Content thread and semantics fully separate from layout.
	Fragmentation
	Fragmentation
	We create new things to solve problems
	Show your problems
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Why can’t I do that?
	Slide Number 139
	Slide Number 140
	Slide Number 141
	“At a W3C meeting or standards discussion, the room should not be 60–70% Googlers.”
	“At a W3C meeting or standards discussion, the room should not be 60–70% Googlers.”
	More than ever the web needs diversity of thought.
	Thank you

