
TELEMETRY
WITHOUT THE
TOOL TAX
Ben Greenberg

 @rabbigreenberg

Once upon a time...

@rabbigreenberg

@rabbigreenberg

Web development was simpler

@rabbigreenberg

What happened?

@rabbigreenberg

��

Distributed
Architecture

Containerization Kubernetes Five Nines

@rabbigreenberg

As complexity
grows, so does the
ecosystem to
support it

@rabbigreenberg

Maybe you have a similar
story to my own?

@rabbigreenberg

Hi, my name is Ben

Software

Developer

@rabbigreenberg

I write code
@rabbigreenberg

Sometimes,
I even write tests

@rabbigreenberg

Then one day,
something happened...

@rabbigreenberg

I discovered
Observability was useful

@rabbigreenberg

��

But, there's a lot of tooling out there
How do you choose?

@rabbigreenberg

OpenTelemetry

is a response to
tooling overload
and vendor
lock-in

3/17

@rabbigreenberg

Gain critical
visibility into
your app with one
dependency @rabbigreenberg

��

HOW DID IT ALL
GET STARTED?

The origin story of OTel

The Telemetry Reality:

Divided
instrumentation

Agents Protocols

APIS

SDKs
Collectors

@rabbigreenberg

The evolution of the project

OpenTracing OpenCensus OpenTelemetry

@rabbigreenberg

2015

A vendor
neutral
standard and
set of APIs to
trace across
microservices

@rabbigreenberg
@rabbigreenberg

2017

Collect
metrics and
traces and
send to any
backend of
your choice@rabbigreenberg

2019

A unified
point to
integrate
metrics and
traces across
all surfaces@rabbigreenberg

2021

v1.0.0
released of
the
specification

@rabbigreenberg

The OTel Perspective:

United Instrumentation

Metrics

Traces

Logs

@rabbigreenberg

Open standards
decrease complexity

@rabbigreenberg

HOW DOES
IT WORK?

This is your
application

This is the
OTel API layer

The
instrumentation
layer by
language

Processor and
exporter of the
telemetry data

Construct
metric data

without
concern if it
gets consumed

by an OTel
agent or not

https://newrelic.com/blog/best-practices/opentelemetry-concepts

@rabbigreenberg

Breaking down
the OTel Collector

Receiver

Accepts telemetry data

Popular library -

OTLP (OTel Protocol)

Receiver

Processor Exporter

Pipeline to process

the data

(i.e. filter, sample and

enrich the data)

Send the data to a

backend of your choice

Formats the telemetry

data for the requirements

of the chosen backend

@rabbigreenberg

TRACES AND METRICS
What's the difference?

Traces
Capturing a Single Request

Trace
is a single request in the system01

Span
is a single component of a trace02

Traces
are trees of spans03

@rabbigreenberg

Metrics
Capturing data over time

Metrics
are aggregated measurements01

Metric
data captures a moment in time02

Metrics
are less detailed than traces03

@rabbigreenberg

Example of Trace API Implementation

https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/exceptions.md

@rabbigreenberg

Example of Metrics API Implementation

https://opentelemetry.io/docs/instrumentation/java/manual/

@rabbigreenberg

WHAT TO DO WITH
YOUR DATA

What happens after you collect?

Your data is yours
The new golden rule:

@rabbigreenberg

Build Your Own
Observability Backend

@rabbigreenberg

Uniform specs make
building your own
backend possible

@rabbigreenberg

��

Bring your data to the
vendor of your choice

@rabbigreenberg

Vendors that
support
OpenTelemetry

@rabbigreenberg

WHY DOES
THIS MATTER?

"Tool proliferation

remains of the

challenging

double-edged swords

facing DevOps-minded

teams."

Aleksey Vorona
InformationWeek

@rabbigreenberg

"... the DevOps space is

developing really fast and

we see new technologies, new

concepts emerging all the

time, so many engineers feel

pressure to learn new tools

to use in their projects."

Nana Janashia
Techworld with nana

@rabbigreenberg

OPENTELEMETRY
PROVIDES YOU WITH

THE DATA YOU NEED...

Without
The Tool Tax

@rabbigreenberg

THANK YOU!

@rabbigreenberg

