Object Calisthenics

9 steps to better OO code

About me

Pawet Lewtak
Senior Developer at Xstream
@pawel_lewtak

Agenda

Learn how to make our code more:

e readable
e reusable
e testable
e maintainable

Things worth knowing

e DRY
o KISS
e SOLID
e YAGNI
e GRASP

Calisthenics

Caleis* then-ics
/ kalas'THeniks/

"Calisthenics are exercises consisting of a
variety of gross motor movements; often
rhythmical and generally without equipment
or apparatus.”

Wikipedia

Object Calisthenics

The

ThoughtWorks
Anthology

Essays on
Software
Technology
and Innovation

https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

Written for Java

Why bother?

Code iIs read more
than it is written

Author unknown

You need to write code that
minimises the time it would
take someone else to
understand it - even if that
someone else is you

Art of Readable Code by Dustin Boswell,
Trevor Foucher

Rule #1

Only one level of
indentation per method

class Board(object):
def _init__ (self, data):
Level O
self.ouf =™
for i in range(10):
Level 1
for j in range(10):
Level 2
self.buf += data]i][j]

class Board(object):
def _init__ (self, data):
self.ouf ="
self.collect_rows(data)

def collect_rows(self, data):
for i in range(10):
self.collect_row(datali])

def collect_row(self, row):
for j in range(10):
self.buf += row(j]

class UserService(object):
def register(self, username, email, promo_code = False):
user = self.create_user(username)
if email:
send_email(user, email)
if promo_code:
send_promo_code(user, promo_code)

products = self.get_products_by user(...)
iIf products is None:
products = self.get_products_by media(...)
If products is None:
products = self.get_products_by domain(...)
If products is None:
products = self.get_any_ products(...):
If products is None:
raise Exception('Access denied')
else:

else:

else:

else:

products = self.get_products_by user(...)
iIf products is None:

products = self.get_products_by media(...)
If products is None:

products = self.get_products_by domain(...)
If products is None:

products = self.get_any_ products(...):
If products is None:

raise Exception('Access denied')

else...

Chain of command

class Command(object):
next_ command = None

def add(self, next_command):
if self.next_ command is None:
self.next_command = next_command
else:
self.next_command.add(next_command)

def process(self, *args, **kwargs):
""" computations
pass

def process(self, *args, **kwargs):
result = self._process(*args, **kwargs)
if result is None:
if self.next command is not None:
return self.next_command.process(*args, **kwargs)
else:
return result

return None

class GetProductsForUser(Command): pass
class GetProductsByMedia(Command): pass
class GetProductsByDomain(Command): pass
class GetAnyProducts(Command): pass

commands = GetProductsForUser()
commands.add(GetProductsByMedia)
commands.add(GetProductsByDomain)
commands.add(GetAnyProducts)

products = commands.process(...)

Benefits

Single responsibility
Better naming
Shorter methods
Reusable methods

Rule #2

Do not use else keyword

def login (self, request):
if request.user.is_authenticated():
return redirect("homepage")
else:
messages.add_message(request,
messages.INFO,
'Bad credentials'’)
return redirect("login")

def login (self, request):
if request.user.is_authenticated():
return redirect("homepage")

messages.add_message(request,
messages.INFO,
'Bad credentials')
return redirect("login")

def function(param):
iIf param is not None:
value = param
else:
value = "default"

return value

def function(param):
value = "default"
iIf param is not None:
value = param

return value

def function(var_a, var_b, var_c, var_d):
if var_a:
if var_b:
some code
else:
some code
elif var_b and var_c:
if not var_d:
some code
else:
some code
elif var_b and not var _c:
some code

else:
some code

Extract code

Default value

Polymorphism

Strategy pattern

State pattern

Quora

Programming Language Comparisons Computer Programmers Comparisons

Leamning to Program Computer Programming

Is it true that a good programmer uses fewer "if"
conditions than an amateur?

72 Answers

https://www.quora.com/Is-it-true-that-a-good-
programmer-uses-fewer-if-conditions-than-an-amateur

Benefits

e Avoids code duplication
e | ower complexity
e Readability

Rule #3

Wrap primitive types if it
has behaviour

Value Object in DDD

class Validator(object):
def check date(self, year, month, day):
pass

10th of December or 12th of October?

validator = Validator()
validator.check date(2016, 10, 12)

class Validator(object):
def check date(self, year: Year, month: Month, day: Day) -> bool:
pass

Function call leaves no doubt.
validator.check date(Year(2016), Month(10), Day(12))

def calculate_distance(source_x, source Yy, target_x, target_y):
pass

calculate_distance(1, 2, 3, 4)

from collections import namedtuple

class Point2D(namedtuple("Point2D", "x y")):
pass

def calculate_distance(source point, target_point):
pass

calculate_distance(Point2D(1, 2), Point2D(3, 4))

Benefits

e Encapsulation
e Type hinting
e Attracts similar behaviour

Rule #4

Only one dot per line

OK: Fluent interface

class Poem(object):
def _init__ (self, content):
self.content = content

def indent(self, spaces):
self.content =" " * spaces + self.content

return self

def suffix(self, content):
self.content = self.content + " - " + content

return self

Poem("Road Not Travelled").indent(4)\
Suffix("Robert Frost")\
.content

Not OK: getter chain

class CartService(object):
def get_token(self):
token = self.get_service('auth’)\
.auth_user('user', 'password')\
.get_result()\
.get_token()

return token

1. What if None is returned instead of object?
2. How about exceptions handling?

class Field(object):
def _init__ (self):
self.current = Piece()

class Piece(object):
def _init__ (self):
self.representation =

class Board(object):
def board_representation(self, board):
buf ="
for field in board:
buf += field.current.representation

return buf

class Field(object):
def _init__ (self):
self.current = Piece()

def add_to(self, buffer):
return self.current.add_to(buffer)

class Piece(object):
def __init__ (self):
self.representation =

def add_to(self, buffer):
return buffer + self.representation

class Board(object):
def board_representation(self, board):
buf ="
for field in board:
buf = field.add_to(buf)

return buf

Benefits

¢ Encapsulation
e Demeter's law
e Open/Closed Principle

Rule #5

Do not abbreviate

Why abbreviate?

Too many responsibilities

Name too long

def register _user send welcome email and add to default _groups():
pass

VS

def handle_user_registration():
user = create_user()
send welcome_email(user)
add_to_default_groups()

Avoid confusion

acc =0
// accumulator? accuracy?

pos = 100
// position? point of sale? positive?

auth = None
/ authentication? authorization? both?

Duplicated code

class Order(object):
def ship_order(self):
pass

order = Order()
order.ship_order()

I/ vs
class Order(object):

def ship(self):
pass

order = Order()
order.ship()

Split & extract

Refactor!

Think about proper naming

Benefits

e (Clear intentions
¢ |[ndicate underlying problems

Rule #6

Keep your classes small

What is small class?

e 15-20 lines per method
e 50 lines per class
e 10 classes per module

Benefits

e Single Responsibility
e Smaller modules
e Coherent code

Rule #7

No more than 2 instance
variable per class

Class should handle single
variable state

In some cases it might be
two variables

=<
_

Customer

class CartService(object):
def _init__ (self):
self.logger = Logger()
self.cart = CartCollection()
self.translationService = TranslationService()
self.auth_service = AuthService()
self.user_service = UserService()

class CartService(object):
def _init__ (self):
self.logger = Logger()
self.cart = CartCollection()

Benefits

¢ High cohesion
e Encapsulation
e Fewer dependencies

Rule #8

First class collections

Python's collections module

Doctrine's ArrayCollection

Benefits

e Single Responsibility

Rule #9

Do not use setters/getters

Accessors are fine

Don't make decisions
outside of class

Let class do it's job

Tell don't ask

class Game(object):
def _init__ (self):
self.score =0

def set_score(self, score):
self.score = score

def get_score(self):
return self.score

Usage
ENEMY DESTROYED SCORE =10
game = Game()

game.set_score(game.get_score() + ENEMY_ _DESTROYED SCORE)

class Game(object):
def _init__ (self):
self.score =0

def add_score(self, score):
self.score += score

Usage

ENEMY DESTROYED SCORE =10

game = Game()
game.add_score(ENEMY_DESTROYED_ SCORE)

Benefits

e Open/Closed Principle

O ooNOULhEWN=

Recap

Only one level of indentation per method,

Do not use else keyword,

Wrap primitive types if it has behavior,

Only one dot per line,

Don't abbreviate,

Keep your entities small,

No more than two instance variable per class,
First Class Collections,

Do not use accessors

Homework

Create new project up to
1000 lines long

Apply presented rules as
strictly as possible

Draw your own conculsions

Customize these rules

Make them your own

Final thoughts

These are not best practices

These are just guidelines

Use with care!

Questions?

Links

https://www.cs.helsinki.fi/u/luontola/tdd-
2009/ext/ObjectCalisthenics.pdf

nttps://pragprog.com/book/twa/thoughtworks-anthology
nttps://en.wikipedia.org/wiki/Law_of_Demeter

nttps://www.quora.com/|s-it-true-that-a-good-
programmer-uses-fewer-if-conditions-than-an-amateur

https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf
https://pragprog.com/book/twa/thoughtworks-anthology
https://en.wikipedia.org/wiki/Law_of_Demeter
https://www.quora.com/Is-it-true-that-a-good-programmer-uses-fewer-if-conditions-than-an-amateur

Thank you!

@pawel_lewtak

