WE SOLUED
DEVOPS.
WHAT'S NEXT?




BARUCH SADOGURSKY - @JBARUCH

x Developer Productivity Advocate
x DevRel Advisor for Gradle Inc

x Deve opmen’r -> DevOps > #DPE




SHOWNOTES

speakingjbaru.cl
Slides

Video

All the links!




A DECADE OF DORA

X

Deployment frequency
Change lead time
Change fail rate

MTTR

(@JBARUCH #DPE HDEUOPSUISION

SPEAKING:JEARU!CH



(@DYEARUCH,

Ed

D

Change lead time:

the time it takes for a code

commit or change to be successfully
deployed to production.

Change fail rate:

the percentage of deployments
that cause failures in production,!
requiring hotfixes or rollbacks.

HDPE

HDEUOPSUISION.

>
o X

Deployment frequency:
how often application changes are
deployed to production.

Failed deployment recovery time:
the time it takes to recover from a
failed deployment.

SPEAKINGY/EARU!CH



PUPPET DORA REPORT 2015

Distribution of deployment frequency Distribution of deployment lead time Distribution of mean time to recover (MTTR)
by performance cluster by performance cluster by performance cluster

Super High

High

s <15 mir

<1h 1d-1w  wem 6m+

(@YBARUCH, HDORB ZDEUORSUISION) SPEIKINCY EARUIGH



ACCELERATE DORA REPORT 2078

Aspect of Software Delivery Performance

Deployment frequency
For the primary application or service you work on, how often does your organization
deploy code?

Lead time for changes

For the primary application or service you work on, what is your lead time for changes
(i.e., how long does it take to go from code commit to code successfully running

in production)?

Time to restore service

For the primary application or service you work on, how long does it generally
take to restore service when a service incident occurs (e.g., unplanned outage,
service impairment)?

Change failure rate

For the primary application or service you work on, what percentage of changes results
either in degraded service or subsequently requires remediation (e.g., leads to service
impairment, service outage, requires a hotfix, rollback, fix forward, patch)?

(@JEARUCH

On-demand
(multiple
deploys per day)

Less than
one hour

Less than
one hour

0-15%

Medium

Between once Between once Between once
per hour and per week and per week and
once per day once permonth  once per month

Between one Between one Between one
day and week and month and
one week one month® six months®

Less than Less than Between one
one day one day week and
one month

46-60%

HDEVOPSUISION

PERFORMANCE PROFILES

48%

HIGH PERFORMERS

37%

MEDIUM PERFORMERS

15%

LOW PERFORMERS

SPEAKING:JEARU!CH




GOOGILE C1OUD DORA REPORT 2024

Cgll

35%
(33-36%)

B one ty once 40% Betweenone 25%
month and per month and week and (23-26%)
six months once every six one month

months

(@JEARUCH. #DPE HDEVOPSUISION SPEAKING?JEARU!CH



CLUSTER CHANGES OVER TIME

120]

90+

2019 2021

--Elite - High -- Medium - Low

@ @ENRUEH HDOPE HDELOPSUISION




O TAlE

WE FIGURED THE
"DEVOPS™ SHIT OUT.
DONE.




(@DYEARUCH,

‘011

Change lead time:

the time it takes for a code

commit or change to be successfully
deployed to production.

HDPE

HDEUOPSUISION.

SPEAKINGY/EARU!CH



LEAD TIME OVER TIME

Best© O

Better-

Good-

Fair-

Poor+

Worst
2015

(@JBARUCH H#DPE H#DEUOPSUISION SPEAKING.JEARU.CH



WHY DOES LEAD TIME

DECLINE?!

ﬁ (@DYEARUCH, HDPE HDEUOPSUISION, SPEAKINGY/EARU!CH



(@JEARUCH. #DPE HDEVOPSLUISION SPEAKING:JEARU!CH



Process

(@JEARUCH. #DPE HDEVOPSLUISION SPEAKING:JEARU!CH



Productive Productive
People Process

Productive
Tools

(@JEARUCH. HDEVOPSLUISION SPEAKING:JEARU!CH



=

Kubernetes gz

(@JEARUCH. #DPE HDEVOPSLUISION SPEAKING:JEARU!CH



THE NEXT FRONTIER:

PRODUCTION SYSTEM
OF YOUR PRODUCTION
SYSTEMS

(@JBARUCH #DPE #DEUOPSUISION SPEAKING.JEARU.CH



THE PAIN IS REAL

-

Builds and Tests are Slow!

90% of surveyed IT organizations
experienced challenges with too
much time spent waiting on build
and test feedback.

Published: Sep. 25, 2023 TVID: AE3-632-6FE
(@Y BARUGH) HIOPE HOEIOLSLISION|

90 %




-

Development Pains are Widespread

Which of the following challenges or pain points did your
organization experience prior to implementing Developer

Productivity Engineering?

Too much time spent waiting on build and test
feedback either locally or during Cl

Inability to easily troubleshoot and determine
the root cause of build, test and Cl failures
including flaky tests

Insufficient observability of analytics on build
and test performance and regressions, failure
trends, and productivity bottlenecks

(@YBARUEH, HDPB

e 04
SRR R

e R

HOELORSUISION|




(@JEARUCH

Developer
Productivity

- i Empowered
Engineering

Teams
DevOps

= o

Kubernetes @5

HDPE HDEUOPSUISION SPEAKING:JEARU.CH



DEVELOPER PRODUCTIVITY ENGINEERING!

sy @IBARUCH H#DEUOPSUISION HDPE

SPEAKING.JEARU.CH



DEVELOPER PRODUCTIVITY ENGINEERING

Foster Faster Feedback

Eliminate Toil for
Developers
Outcomes Over Output

ﬁ (@JBARUCH HDEUOPSUISION #DPE SPEAKING:JEARU!CH




TALK IS CHEAP,
SHOW ME THE
GOODS!



SMALL DPE IMPROVEMENTS MAKE A HUGE DIFFERENCE

Generate code faster: Better IDE

Test better: Testcontainers
Enforce better code: Sonar

Test more reliably: Flaky test detection
Foster Faster Feedback:

() @RI HDELORSLISION O




FEEDBACK EFFICIENCY

IDE: Sub-seconds (I type, it marks it red)
Build: Seconds
Cl: Minutes

Production: Hours/Days

#DEUOPSUISION SPEAKING.JEARU.CH



REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

IDE Build Cl Production

Faster

Feedback Time

\

Slower \

Distance from Developers

Expected —e—Real

WA EARUGH HDEVOPSUISION HDPE



THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GET BACK

"'i

OH CARRY ON.

HDEUOPSUISION

SPEAKING:JEARU!CH



HDEUOPSUISION SPEAKING:JEARU!CH



G O 8 https://www.bruceeckel.com/2021/01/02/the-problem-with-gradle/

stymied me. This is the problem I had with Gradle:

To do anything you have to know everything

H BN EEENE ESE ¥ "as

HE S B E e

Hl B B N B Il Bl "l e EE

N N HE "I § NS B=m Enm B

HDEUORSUISION: SPEAKINGY EARUICH



HDEUOPSUISION



WHAT IS BUILD?

Project setup
Downloading the Internet

Artifact generation: Compilation, packaging, etc

Tests
Artifact deployment

HDEUOPSVISION SPEAKING*IEARU!CH



WHAT CAN GO WRONG?

Project setup
Downloading the Internet

Artifact generation: Compilation, packaging, etc

Tests
Artifact deployment

HDEUOPSVISION SPEAKING*IEARU!CH



WHEN CAN IT GO WRONG?

HDEUOPSIISION



THE BUILD FRUSTRATES
THE DEVELOPERS




LET'S ASK cHATGPT

What techniques can | use to speed up a Maven build?

Sure, here are some quick tips to speed up a Maven build:

. Skip Tests: Use " -DskipTests " to skip running tests.
i g i E.g., *-T 4" for4threads.
. Offline Mode: Use " - -offline" to avoid checking for updates.
. Incremental Build: Use "mvn -am -pl- to build only changed modules and their
dependencies.
5. Profile: Use Maven profiles to conditionally enable plugins.
6. Resource Filtering: Limit resource filtering to only necessary files.

7. Use a Mirror: Set up a local Nexus or Artifactory mirror.

Hope that helps! Got a preference for Gradle, but these should give your Maven build a

boost.

HDEUOPSVISION SPEAKING:JEARU!CH




WHAT THE ACTUAL FxcK 2!

x  Skipping tests defeats the purpose of
the build!

x  How about skipping compilation?

x We want faster feedback, not less
feedback

WA EARUGH HDEVOPSUISION HDPE



WHAT
FEEDBACK DO
WE WANT?

#DPE



C1/€D PIPELINE QUALITY GATES

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Non- Non- Non-

Basic Basic Basic Quality  Quality  Quality func func func

Unit tests Code coverage Static code analysis  Secrets scanning Load Testing Compliance

HDEUOPSVISION SPEAKING:JEARU!CH






TWO TYPES OF FEFDBACK

eg. CI/CO
ASIIVEFIROVNONIS | x - we never wait for it

results are distracting

e.g. build
SYNCHRONOUS) we'll wait for it in the flow

we'll be pissed off when it's slow

#DEUOPSUISION SPEAKING:JEARU!CH



REVERSE DEPENDENCY ON DISTANCE FROM DEVELOPERS

IDE Build Cl Production

Faster

Feedback Time

Slower

Distance from Developers

(<) @I #DELORSLISION 0



IDEAL BUILD TIME FEEDBACK

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Non- Non- Non-

Basic Basic Basic Quality  Quality  Quality func func func

Unit tests Code coverage Static code analysis  Secrets scanning Load Testing Compliance

HDEUOPSVISION SPEAKING:JEARU!CH



WON:TIT
SLow.
DOVWN THE
BUILDZ:

VA IEARUGH HDEUOPSISION



DELIGHTFUL BUILD (PicK TWO):

PROVIDES MAX FEEDBACK
&2 Fasr *

oA DIBARUCH #DEUOPSUISION #DPE

SPEAKING:JEARU:CH



SKIP WHAT CAN
BE SKIPPED
(BUT NO
MORE!)



AVOIDANCE: INCREMENTAL BylLD

x  Don’'t build what didn’t changed
x Don’t build what isn’'t affected

HDEUORSVISION: SPEAKINGY EARUICH



AVOIDANCE: INCREMENTAL BylLD SHORTCOMINGS

x Relies on produced artifacts
x Relies on architectural decisions

HDEUOPSUISION SPEAKING:JEARU!CH



AUOIDANCE: CACHING

x  Makes the build faster
x  Makes the build faster for everybody
x Makes the build faster always

x Makes all parts of the build faster

WA EARUGH HDEVOPSUISION HDPE




AN

&) 'Build time ® ™. Serial execution.® <~ Avoidance savings @ @ Build cache .overhead ® €% "Dependency.downloading @

12 .min28 sec 15 min 13 sec waen - 39 min 10 sec 7362%) 16 sec 2.92sec
Up todate (0 ® Local build cache @ ® Remote build cache @ @
19 min 33 sec 4.3 sec 19 min 33 sec

b m il w"me "lx‘ul'n iM_h IIH ﬂn [ Mﬂtv'i""wm i St e M et U‘ f ﬂlw ul Nﬁ ‘ﬂ"ul i _” ‘ \l" “m M ﬁlJﬂ ' W ‘mﬂ

1h 40m
1h 15m

50

3

25

3

JBIIRUC DEU@PS UISION,




AVOIDANCE: PREDICTIVE TEST SELECTION

x Learns code changes effects de-facto
x  Skips tests with

high degree of confidence

HDEVORSUISION: SPEAKINGY EARUICH



HOW TEST PREDICTION WoORKS

X

Code changes and test
results are thrown into

learning model
After a while, the model E=EF et
predicts which changes \gfs:

fail which tests

#DEUOPSUISION



TEST PREDICTION

Correlate
what changed with

: observed
where it changed test

failures

HDEUOPSUISION

Predictions
which
changes
will fail
which tests

SPEAKING:JEARU!CH



BLACK MAGIC IN AcTiON

x The more tests a project
has, the less they break

x Refactorings in Java
break tests less than
in JavaScript

ﬁ (@JBARUCH HDEUOPSUISION: H#DPE SPEAKINGY/EARU!CH



time ®
Last 90 days Relative Fixed
redictive Test Selection » Q Find test task/goal
age (78 builds) Simulations (51.3 builds)
n build time: 11 min 18 sec Mean build time: 5 min 27 sec
[ask/Goal failures predicted @ Test failures predicted ®
D8.7% (270K of 274K total) 9 6.4% (355K of 3.68K total)

83

0
7.55K
Jun 24 Juld  Jul13 Jul 23 Aug2 Augl2 Aug23 Sep2 Sepl4d

s/Goals by mean duration (top 50) ®

Task/Goal failures predicted ®

g-boot-build s :spring-boot-project:spring-boot-tools:spring-b... 15/ 16 (93.8%)

1g-boot-build » :spring-boot-project:spring-boot-tools:spring-b... 84 / 87 (96.6%)

@ @Y BRUGH

Custom values @

#”EU@P§UISI@N | © Gradle Inc. 2023 | Help and #DP[

Tags ® Outcome @

Selection profile ®

Conservative  Standard F
Savings potential ® Avoidable tests ® Unavoidable tests @
61 d 2 hr (aa%) 1.84M (3o%) 4 13M (68%)
INCORRECT 2d 18h AVOIDAB
37 61d 2h
CORRECT UNAVOID
2.70K 76d 20h
Os,, 1=
PASSED | i 8l " INSUFF. D
252K ) e N L] iy N | || 2d12h
2d 18h - \
Jun 21 Jull Jul10  Jul20 Jul30 Augl1l0 Aug?21 Sep 1 Sep 14
All predictions ~ Only incorr

Test failures predicted ® Simulations @ Mean duration ® Total test time ® Savings potential (

15/ 17 (88.2%) 637 / 677 —— 31 min 12 sec 13d 14 hr 7 d 9 hr(54%)

18 min 18 sec

7 d 10 hr

86 /89 (96.6%) 612 / 661 n— 5d 2 hr(69%)




SPEED UP
WHAT
CAN'T BE
KIPPED



TEST PARALLELIZATION

x Use max power of local machine
x (Yes, your boss should buy you the

bleeding edge)

HDEUORSVISION: SPEAKINGY EARUICH



Task path Started after ) Duration (3) Task path Started after 3 Duration ®
:clean 0.499s 0.053s :clean 0.416s 0.048s
:compileJava 0.553s 0.146s :compileJava 0.465s 0.085s
:processResources NO-SOURCE 0.699s 0.001s :processResources NO-SOURCE 0.550s 0.000s
:classes 0.700s 0.000s :classes 0.550s 0.000s
;jar 0.701s 0.040s ;jar 0.551s 0.040s
:assemble 0.741s 0.000s :assemble 0.591s 0.000s
:compileTestJava 0.741s 0.242s :compileTestJava 0.592s 0.212s
:processTestResources  NO-SOURCE 0.000s :processTestResources NO-SOURCE 0.001s
- : 0 80 0.000

0.985s 1m 59.135s 0.805s 10.553s

NU.120 0.0V . ) 0.00Us

tasks.test { this: Test!
onlyIf { true }

maxParallelForks = Runtime.getRuntime().availableProcessors()

Foct |l oanana J Thic 1 oct] AnainAl AN

HDEUOPSUISION SPEAKINGYEARUYCH,




TEST DISTRIBUTION

x Cluses fan-out to speed-up tests
x  Shouldn’t you enjoy it for local tests?

x Use the cloud to distribute test load
x RUN ALL THE TESTS!

HDEUORSVISION: SPEAKINGY EARUICH



WHY NOT JUST USING CI FaN-ouT ?

Relying on shared Cl infrastructure
Clinfrastructure is not optimized for

real-time feedback!

Are the agents as fast as they can
be?

HDEVORSUISION: SPEAKINGY/EARU!CH



ﬁ (@JBARUCH HDEUOPSVISION #DPE SPEAKING:JEARU:CH



OBSERUE AND IMPROVE

x  Measure local build times across
time and environments

x Detect downfacing trends
x Find root causes and improve

HDEUOPSVISION: SPEAKINGY/EARU!CH



CS? Gradle Enterprise $= Build Scans Performance il Trends () Failures @ Tests (B PredictiveTestSelecton @& | @

Basic search  Advanced search <

User ® Hostname @ Project ® Requested tasks/goals/targets @ Build tool ® Build tool version @
Start time. ® Custom values ® Tags @ Qutcome @
(%) Jan 16 2020 02:00 CDT Feb 2 2020 23:59 CDT Relative Fixed git branch name=sam/performance-scenario x ()
Overview  Build time  Serial execution =~ Avoidance savings  Build cache overhead = Dependency downloading Day Week Month
® Build time ® Non execution (?) Execution @
4 min 17 sec 28 sec 3 min 49 sec
TR 22228 o e e e ettt a2 aba a2 at a2 a et a%avatatat et atat a2 2 a2 ab a2 aaa"aaava et ar MEAN
4m 17s
MEDIAN
4m
25TH-75TH %ILE
17s — 7m 6s
5TH-95TH %ILE
12s — 10m 49s
Jan 13 - Jan 19 Jan 20 - Jan 26 Jan 27 - Feb 2
I Serial execution (® Non-cacheable ) Build cache miss @) Build cache hit ® Up to date & non-actionable )

44 sec 34 min 40 sec 4.2 sec
HOELOLSUISION, HI)PH




THE GAINS ARE REALY

O W
w ow w

ARUCH,




DPE Dramatically Improves
Productivity

Almost every surveyed IT organization agreed 8 4 o/
that “Since integrating Developer Productivity 3
Engineering into our development process,

the time savings we experienced on build and

test cycle times have dramatically improved

developer productivity.”

A kUG EDELOPSUISION S PE



DPE Fosters Developer Joy

84% of surveyed users agree that 84%
DPE’s impact on their toolchain
makes their job more enjoyable.

TechValidate
by SurveyMonkey

UAVENCEIly Published: Sep. 25,2023 TVID: 930-05A-A5F
) IR HDEUQRSUISION A




DEVELOPER PRODUCTIVITY IS THE NEXT FRONTIER

We figured out (most of) DevOps

If you want to excel in your production
environment, you know how

But what about your path to production?
There is work to be done there.
DPE is the way to go!

HDEUORSVISION: SPEAKINGY EARUICH



LEARN MORE AND TRY IT TODAY!

Take the Gradle/Maven Speed
Challenge!

Be DPE Agent of Change!
Read the DPE Handbook!
Watch the DPE Summit keynotes!

SPEAKING.JBARU.CH

HDEUOPSVISION SPEAKING:JEARU!CH



THANKS!

Q&A and Twitter X/Bsky/Mastodon/LinkedIn ads:

X @jbaruch
X #DevOpsVision
X speaking.jbaru.ch




