

### Monitoring OVH: 300k servers, 28 DCs... and one Metrics platform

Horacio Gonzalez @LostInBrittany



#### Who are we?

## Introducing myself and introducing OVH



#### **Horacio Gonzalez**

#### @LostInBrittany

Spaniard lost in Brittany, developer, dreamer and all-around geek















#### **OVH: A Global Leader on Cloud**

**200k** Private cloud VMs running



Dedicated IaaS Europe

| • ••• | • ••• | • ••• | • ••• | • ••• |
|-------|-------|-------|-------|-------|
| • ••• | • ••• | • ••• | • ••• | • ••• |
| • ••• | • ••• | • ••• | • ••• | • ••• |
| • ••• | • ••• | • ••• | • ••• | • ••• |
| • ••• | • ••• | • ••• | • ••• | • ••• |
| • ••• | • ••• | • ••• | • ••• | • ••• |
| • ••• | • ••• | • ••• | • ••• | • ••• |

Hosting capacity: 1.3M Physical Servers

**360k** Servers already deployed





> 1.3M Customers in 138 Countries





#### **OVH**: Key Figures

- 1.3M Customers worldwide in 138 Countries
- 1.5 Billions euros investment over five years
- 28 Datacenters (growing)
- 350k Dedicated Servers
- **200k** Private cloud VMs running
- 650k Public cloud Instances created in a month
- **20TB** bandwidth capacity
- 35 Points of presence
- **4TB** Anti DDoS capacity

Hosting capacity: 1.3M Physical Servers

+ 2 500 Employees in 19 countries 18 Years of Innovation





#### Ranking & Recognition



#### 1<sup>st</sup> European Cloud Provider\*

1<sup>st</sup> Hosting provider in Europe

1<sup>st</sup> Provider Microsoft Exchange

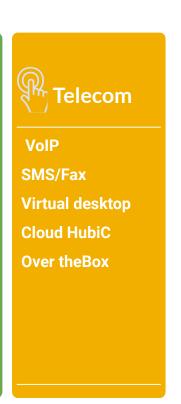
**Certified** vCloud Datacenter

**Certified** Kubernetes platform (CNCF)


Vmware Global Service Provider 2013-2016

**Veeam** Best Cloud Partner of the year (2018)






#### **OVH: Our solutions**













### Once upon a time...

### Because I love telling tales





#### This talk is about a tale...



A true one nevertheless



#### And as in most tales



It begins with a mission



#### And a band of heroes



Engulfed into the adventure

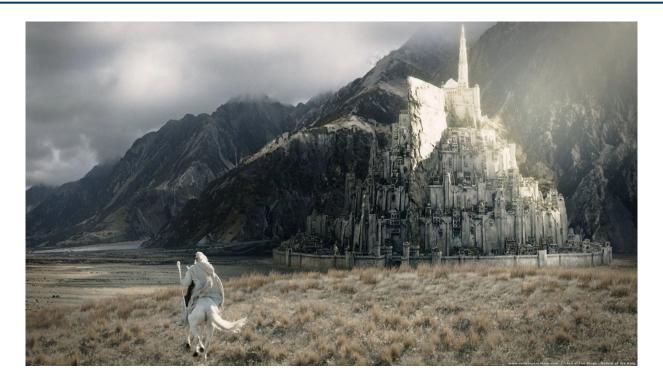


#### They fight against mishaps



And all kind of foes

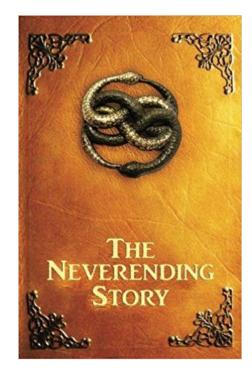



#### They build mighty fortresses



Pushing the limits of possible




#### And defend them day after day



Against all odds



#### But we don't know yet the end



Because this tale isn't finished yet



### It begins with a mission

Build a metrics platform for OVH



# To make better decisions by using numbers



We want our code to add value



## We need to make better decisions about our code



## Code adds **value** when it **runs** not when we write it



## We need to know what our code does when it runs



## We can't do this unless we **measure** it



## We have a mental model of what our code does



# This representation can be wrong



## We can't **know** until we **measure** it





"The app is slow." - User





"The app is slow." - User
"The page takes 500ms!" - Ops



?

SQL Query?
Template Rendering?
Session Storage?





### We don't know





With observability:

SQL Query.....53ms

Template Rendering......1ms



Session Storage......315ms



### With observability:

SQL Query.....53ms

Template Rendering......1ms

Session Storage......315ms



We improve our mental model by **measuring** what our code **does** 





We use our **mental model** to **decide** what to do





A better mental model makes us better at deciding what to do





Better **decisions** makes us better at generating value





### Measuring make your App better





#### It began with a mission

Build a metrics platform for OVH



## A metrics platform for OVH



For all OVH



# **Building OVH Metrics**

One Platform to unify them all, One Platform to find them, One Platform to bring them all and in the Metrics monitor them





#### What is OVH Metrics?

# Managed Cloud Platform for Time Series



#### **OVH** monitoring story

We had lots of partial solutions...











#### **OVH** monitoring story

One Platform to unify them all

What should we build it on?



#### **OVH** monitoring story

#### Including a really big





## OpenTSDB drawbacks

OpenTSDB RowKey Design

metrics timestamp tagk1 tagv1 tagk2 tagv2





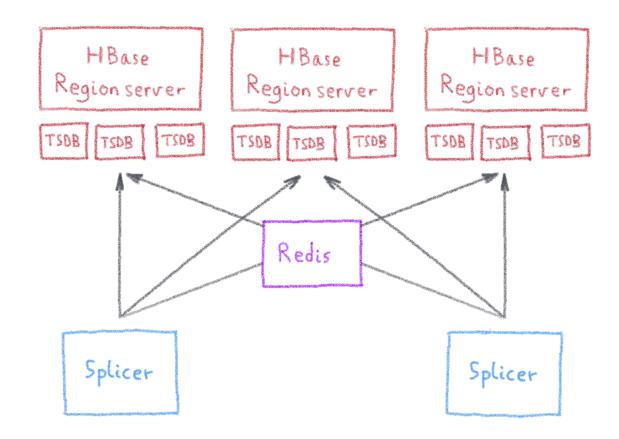
## OpenTSDB Rowkey design flaws

- .\*regex.\* => full table scans
- High cardinality issues (Query latencies)

We needed something able to manage hundreds of millions time series



OpenTSBD didn't scale for us




#### OpenTSDB other flaws

- Compaction (or append writes)
- /api/query : 1 endpoint per function?
- Asynchronous
- Unauthenticated
- ...



# Scaling OpenTSDB





#### **Metrics** needs

## First **need**:

To be massively scalable



# Analytics is the key to success



Fetching data is only the tip of the iceberg



## Analysing metrics data





To be scalable, analysis must be done in the database, not in user's computer



#### **Metrics** needs

## Second **need**:

To have rich query capabilities



# Enter Warp 10...

Open-source Time series Database







#### More than a Time Series DB

#### Warp 10 is a software platform that

- Ingests and stores time series
- Manipulates and analyzes time series



#### Manipulating Time Series with Warp 10

A true Time Series analysis toolbox

Hundreds of functions

Manipulation frameworks

Analysis workflow



## Manipulating Time Series with Warp 10

A Time Series manipulation language





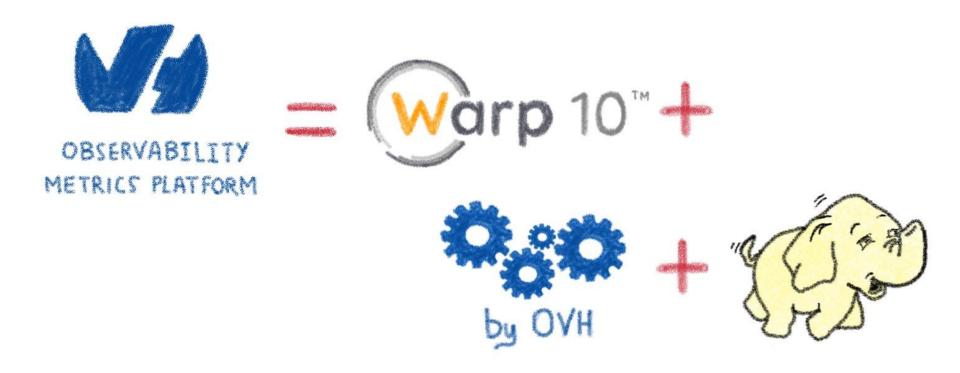
## Did you say scalability?





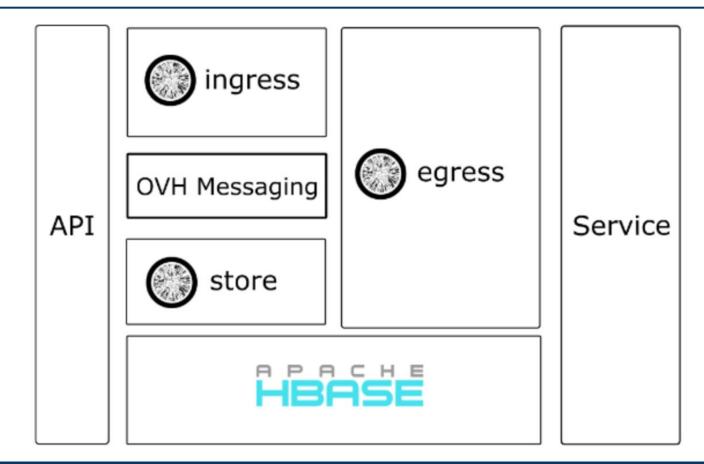
From the smallest to the largest...




## More Warp 10 goodness

- Secured & multi tenant
- In memory Index
- No cardinality issues
- Lockfree ingestion
- WarpScript Query Language
- Support more data types

- Synchronous (transactions)
- Better Performance
- Better Scalability
- Versatile
   (standalone, distributed)




#### **OVH Observability Metrics Platform**





#### **Metrics Data Platform**





# Building an ecosystem

From Warp 10 to OVH Metrics



# Multi-protocol

Why to choose? We need them all!



























Why choose? Let's support all of them!



#### **Metrics Platform**

OpenTSDB, Prometheus and Graphite
Visualize with Grafana



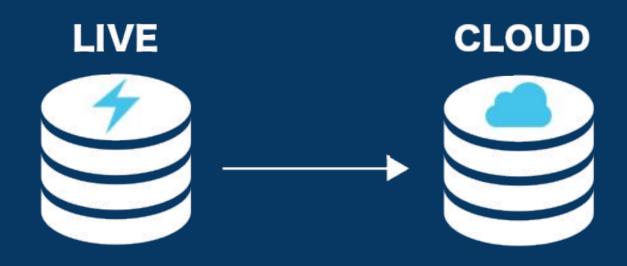




#### **Metrics Platform**

```
graphite
            influx
https://
                        .<region>.metrics.ovh.net
          opentsdb
         prometheus
           warp10
```




#### **Metrics Live**

In-memory, high-performance Metrics instances



#### In-memory: Metrics live





+120 million of writes/s



#### In-memory: Metrics live





## **CLOUD**Persistent & Performant



MAOVH

## In-memory: Metrics live



#### STAGE 1

Short retention - hours Fine grained monitoring Raw data

#### STAGE 2

Short retention - days
Consolidated aggregations
Global infra monitoring

#### STAGE 3

Customer metrics Historical datas





## Monitoring is only the beginning

OVH Metrics answer to many other use cases



#### Use cases families

- Billing (e.g. bill on monthly max consumption)
- Monitoring (APM, infrastructure, appliances,...)
- IoT (Manage devices, operator integration, ...)
- Geo Location (Manage localized fleets)





#### Use cases

- DC Temperature/Elec/Cooling map
- Pay as you go billing (PCI/IPLB)
- GSCAN
- Monitoring
- ML Model scoring (Anti-Fraude)
- Pattern Detection for medical applications





# **SREing Metrics**

# With a great power comes a great responsibility



432 000 000 000 day

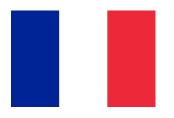


10 Tb / day



5 000 000 dp/s




# 500 000 000 series

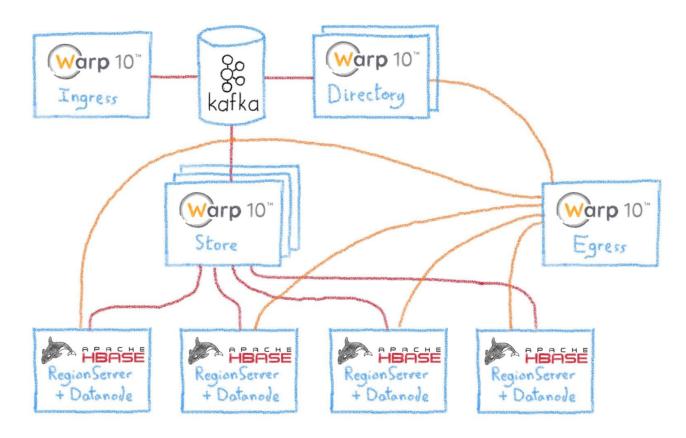


#### Our clusters size

#### **GRA**:

- 150 nodes
- 2 PB
- 1.1 Gbps




#### BHS:

- 30 nodes
- 400 TB
- 120 Mbps





#### Our cluster architecture





# **Detecting errors**

Before it's too late



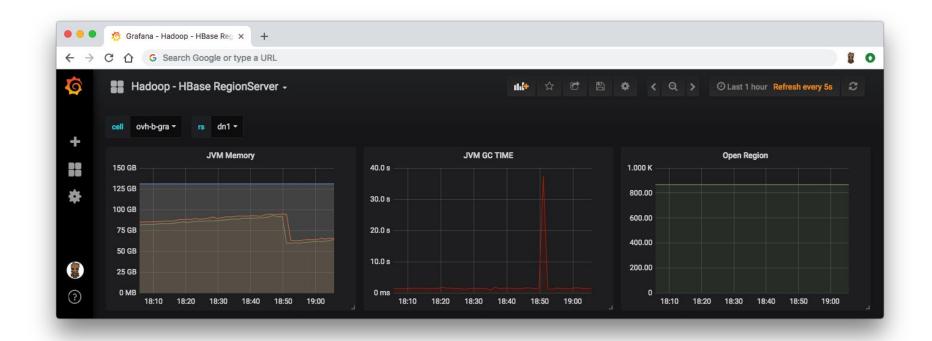


## **Extract errors from logs**

```
1. metrics@GW_B-GRA:~/ansible/ansible-hadoop (ssh)

root@dn-1.hadoop.B.GRA:-# cat /var/log/hbase/hbase-hbase-regionserver-dn-1.hadoop.B.GRA.infra.metrics.ovh.net.log.1 | grep FATAL

2018-09-04 00:56:49,604 FATAL [regionserver/dn-1.hadoop.B.GRA.infra.metrics.ovh.net/10.0.0.1:16020.lo
gRoller] regionserver.HRegionServer: ABORTING region server dn-1.hadoop.b.gra.infra.metrics.ovh.net,1
6020,1530281936345: Failed log close in log roller
2018-09-04 00:56:49,604 FATAL [regionserver/dn-1.hadoop.B.GRA.infra.metrics.ovh.net/10.0.0.1:16020.lo
gRoller] regionserver.HRegionServer: RegionServer abort: loaded coprocessors are: [org.apache.hadoop.
hbase.coprocessor.example.BulkDeleteEndpoint]
root@dn-1.hadoop.B.GRA:~# |
```




#### **Tailor**



Forward logs and extract metrics!

## Monitoring the JVM

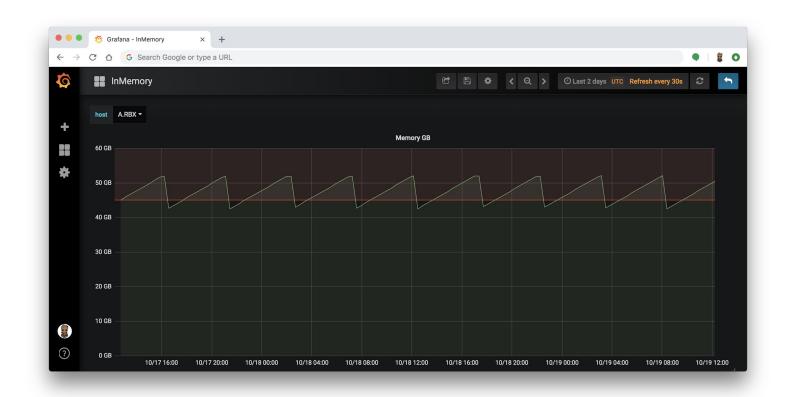




#### Documentation

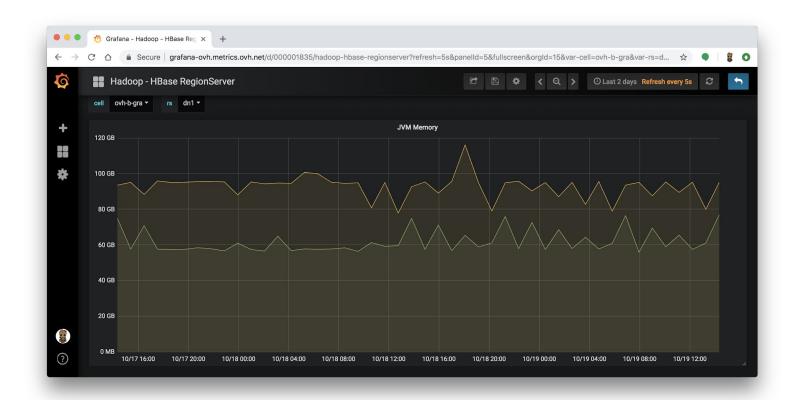





## JVM GC

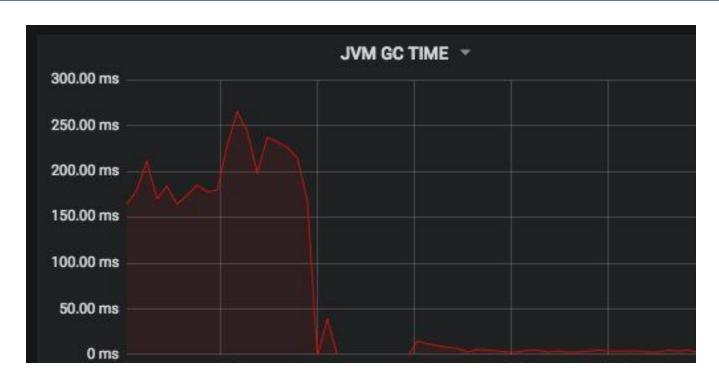
The good, the bad and the ugly






## The good

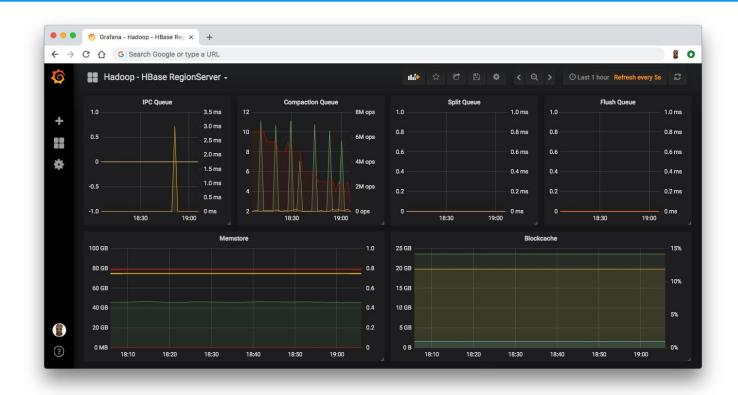





#### The bad

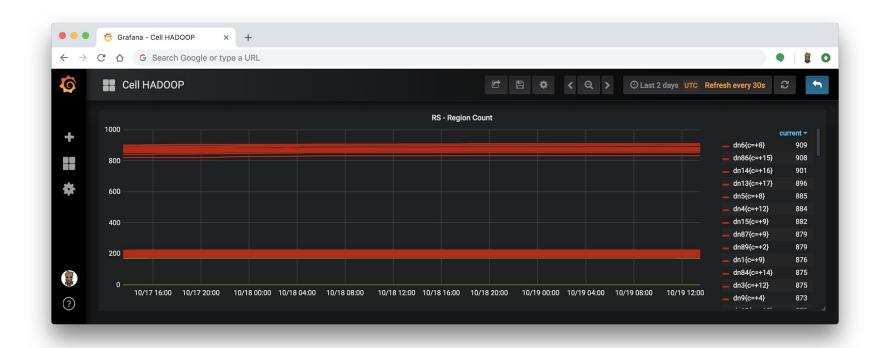





## ... and the ugly



#java #jdk11 #zgc



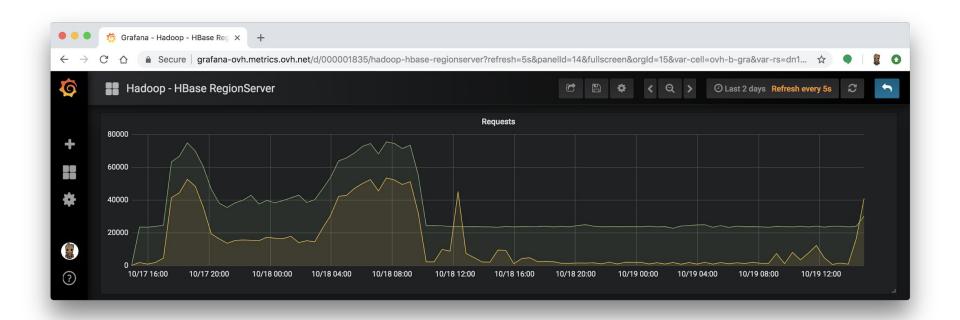

## **Monitoring HBase**





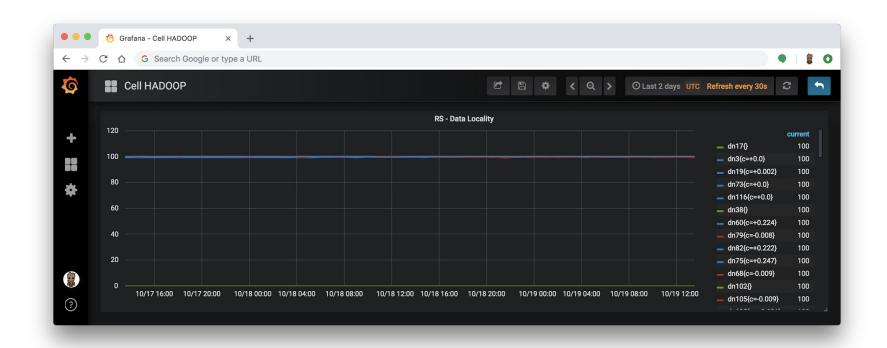

## Number of open regions





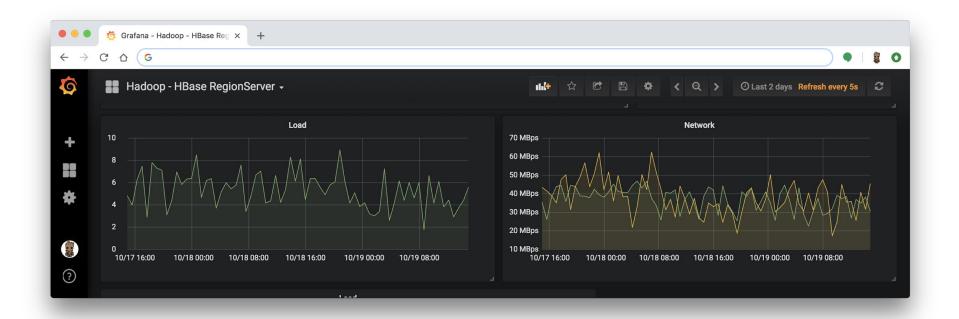

## Queues length






## Number of read and write requests





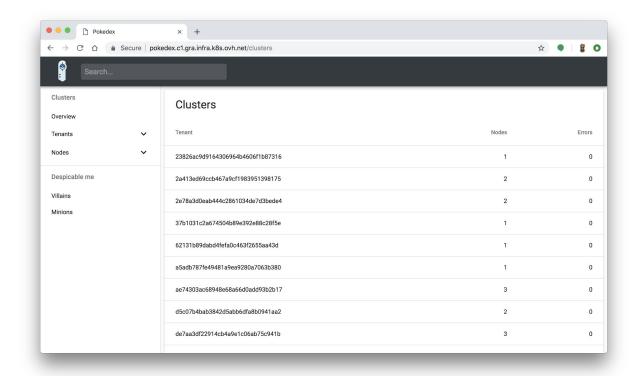

#### Preserve data locality





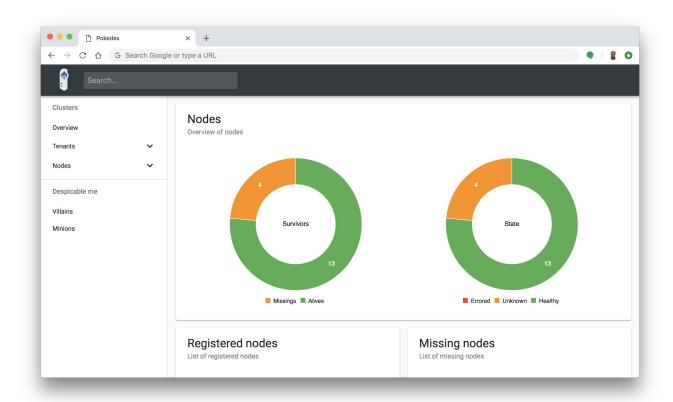
#### Host health





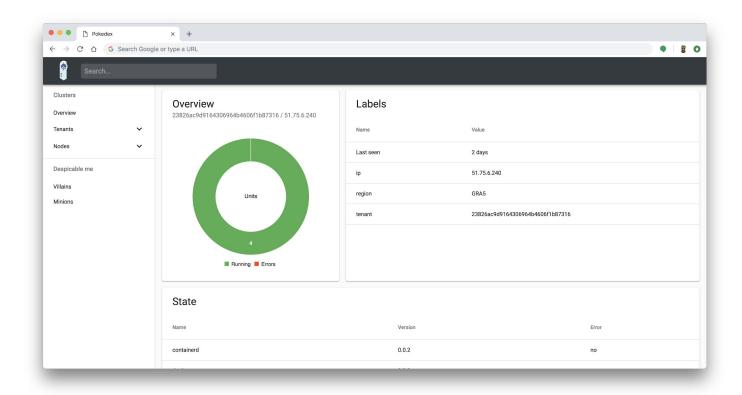

## Pokédex

Inventory all animals.




## Merging all data sources






#### Global visualization





#### Correlate information





# Sacha

The best tamer



#### An awesome CLI

```
1. metrics@GW_B-GRA: ~/ansible/ansible-hadoop (ssh)
root@nn-1.hadoop.B.GRA:/opt/hbase# ./sacha --help
Sacha - Hadoop management tool
Usage:
  sacha [flags]
  sacha [command]
Available Commands:
               HBase sub commands
  hbase
  help Help about any command
Flags:
       --config string config file to use
--help help for sacha
  -h, --help help for sacha
-v, --log-level int Log level (from 1 to 5) (default 4)
Use "sacha [command] --help" for more information about a command.
root@nn-1.hadoop.B.GRA:/opt/hbase#
```



#### Retrieving bare informations

```
. .
                                        1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase servers
                   dn-85.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630297124
| INF0[0005] dn-85 |
                    dn-117.hadoop.b.gra.infra.metrics.ovh.net,16020,1533841829550
INFO[0005] dn-117
INFO[0005] dn-100
                   dn-100.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630307303
INFO[0005] dn-9 |
                  dn-9.hadoop.b.gra.infra.metrics.ovh.net,16020,1526331102574
INFO[0005] dn-70 | dn-70.hadoop.b.gra.infra.metrics.ovh.net,16020,1532638465829
INFO[0005] dn-115 | dn-115.hadoop.b.gra.infra.metrics.ovh.net,16020,1533841825648
INFO[0005] dn-78 | dn-78.hadoop.b.gra.infra.metrics.ovh.net,16020,1530891364037
INFO[0005] dn-10 |
                   dn-10.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630281903
INFO[0005] dn-119 | dn-119.hadoop.b.gra.infra.metrics.ovh.net,16020,1535986042437
INF0[0005] dn-91
                   dn-91.hadoop.b.gra.infra.metrics.ovh.net,16020,1527788063219
INF0[0005] dn-61
                   dn-61.hadoop.b.gra.infra.metrics.ovh.net,16020,1533642514028
INF0[0005] dn-16
                   dn-16.hadoop.B.GRA.infra.metrics.ovh.net,16020,1537799642390
INFO[0005] dn-83
                   dn-83.hadoop.b.gra.infra.metrics.ovh.net,16020,1532707632810
INFO[0005] dn-96
                   dn-96.hadoop.b.gra.infra.metrics.ovh.net,16020,1528715633446
INFO[0005] dn-64
                   dn-64.hadoop.b.gra.infra.metrics.ovh.net,16020,1533644687916
INFO[0005] dn-93
                   dn-93.hadoop.B.GRA.infra.metrics.ovh.net,16020,1537277470529
                   dn-113.hadoop.b.gra.infra.metrics.ovh.net,160<u>20,1533834504553</u>
INFO[0005] dn-113
INF0[0005] dn-28 |
                   dn-28.hadoop.b.gra.infra.metrics.ovh.net,16020,1521767880632
INFO[0005] dn-43
                   dn-43.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536747014896
INFO[0005] dn-48
                   dn-48.hadoop.b.gra.infra.metrics.ovh.net,16020,1526494308594
INF0[0005] dn-12
                   dn-12.hadoop.B.GRA.infra.metrics.ovh.net,16020,1539066910343
INFO[0005] dn-95
                   dn-95.hadoop.b.gra.infra.metrics.ovh.net,16020,1530315838140
```



## Create region map

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase regions
INFO[0021] dn-10 | cdde4aebd3e9c150624089fb447708e6
                                                          M\x09\x9E\x9BbD\x09!*\xC6\x03\x08 |
1 | 857968394 | 1.000000
INFO[0021] dn-2 | b46388051bcf3c216711d8e509c3f824
                                                      M\x09\x9E\x9BbD\x09!*\xC6\x03\x08 | M\x1FG\
xAD!\xA8j\xD7\x9B\x16\x92\xA4 | 4395 | 523983078 |
                                                    1.000000
INFO[0021] dn-2 | f3529226e9f21322467a67c00a1e1101
                                                      M\x1FG\xAD!\xA8j\xD7\x9B\x16\x92\xA4 \mid M\x1
FG\xAD!\xA8j\xD7\x9B\xC1||\x08 | 4140 | 50978108
                                                    1.000000
                                                        M\x1FG\xAD!\xA8j\xD7\x9B\xC1||\x08 |
INFO[0021] dn-128 | 77d08e6ea1a3302d9c83ed6bd8e8cd1f
xA87=\x9D\xB4\x15\x09\x98\xB9 | 7757 | 975843446
                                                     1.000000
INFO[0021] dn-10 | 5cf97e64c30c53ff739<u>5344ecd8a00fa</u>
                                                       M0e\xA87=\x9D\xB4\x15\x09\x98\xB9 | M1\x1E
x85\xD0\xF6\xDB@ = B | 4723 | 914385324 | 1.000000
INFO[0021] dn-3 | 2eade822f20dee70fbd728deba94ca7b
                                                      M1\x1E\x85\xD0\xF6\xDB@ =B \mid M1\x1E\x85\xD0
\xF6\xDB@ \xE6\x02N | 3231 | 47080095 | 1.000000
INFO[0021] dn-10 | 0bc668153aab5b827db02285c520481e |
                                                       M1\x1E\x85\xD0\xF6\xDB@ \xE6\x02N | M;\x9A
\x05\x0F\x0AJ\x15\x0Ek$? | 5014 | 381914734 | 1.000000
INFO[0021] dn-10 | dc37a88543daa6a80300b971743e08e0
                                                       M;\x9A\x05\x0F\x0AJ\x15\x0Ek$? | MAw\xF8\x
DD\xFC\xE0\x9E)A\xD8 | 4119 | 300357457 | 1.000000
INFO[0021] dn-2
                  7ba1b7697aefa6282aa462f8f5188dc5
                                                      MAw\xF8\xDD\xFC\xE0\x9E)A\xD8 | MQm\xFD | 8
                  1.000000
960 | 322459571
                  4456926a9478ea8aed08921767dba5d7 |
                                                      MQm\xFD \mid Mx\xED\xC3\xBC\xA0\xD3-1\xCD\x84\
INFO[0021] dn-2
             741383347 | 1.000000
```



#### Move region to another region server

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase --regions regions.json move dn-103 dn-103
```



## Drain regions of the region server

```
hbase@nn-1:/opt/hbase$ ./sacha hbase drain --regions regions.json dn-88
```



#### Managing multiple hardware profiles

```
(e) policy.json × 🗋 Settings
                                                                                                                         <u>®</u> ■
   Users ▶ fdubois ▶ Desktop ▶ (+) policy.json ▶ {}1
               "name": "8 core",
               "count": 172,
               "rsCount": 19,
               "rs": ["dn-16","dn-17","dn-20","dn-21","dn-23","dn-24","dn-25","dn-26",
               "dn-28", "dn-30", "dn-31", "dn-32", "dn-35", "dn-36", "dn-37", "dn-38", "dn-39",
               "dn-75", "dn-81"]
               "name": "12 core",
      10
               "count": 180,
               "rsCount": 43,
               "rs": ["dn-19", "dn-22", "dn-27", "dn-33", "dn-34", "dn-40", "dn-42", "dn-43",
               "dn-44", "dn-45", "dn-46", "dn-47", "dn-48", "dn-50", "dn-51", "dn-52", "dn-53",
               "dn-55", "dn-56", "dn-57", "dn-59", "dn-60", "dn-62", "dn-64", "dn-65", "dn-66",
               "dn-68", "dn-69", "dn-70", "dn-71", "dn-72", "dn-73", "dn-74", "dn-80", "dn-82",
               "dn-83", "dn-73", "dn-91", "dn-92", "dn-93", "dn-94", "dn-95", "dn-96"]
master C 80 A 0
                                                                                                Zen Ln 10, Col 18 Spaces: 2 UTF-8 LF JSON 😀 🔔 1
```



#### Balance the cluster

```
hbase@nn-1:/opt/hbase$ ./sacha hbase balance --policy policy.json --regions regions.json
```



## Conclusion

#### That's all folks!



