
OMNIPAY

- DREW MCLELLAN -
- CONFOO MONTREAL 2017 -

- PHP PAYMENTS WITH -

OMNIPAY

- DREW MCLELLAN -
- CONFOO MONTREAL 2017 -

- PHP PAYMENTS WITH -

Hello!
I’m Drew McLellan.

Lead dev on Perch CMS.

@drewm github.com/drewm

http://github.com/drewm

Ecommerce
sucks.

Nasty bespoke

checkout

methods.

Promotions and shipping and carts.

OMG taxes!
Payment gateways really suck!

Payment gateways
suck.

Payment gateways

Each gateway has its own requirements.

Most are badly designed.

Most are poorly documented.

Most have horrible SDKs.

All are idiosyncratic in some way.

Payment gateways

We all end up building solutions that are tightly
coupled to a given gateway’s solution.

This makes it really hard to change gateway, to
move code from project to project, or add
additional payment options.

Who changes payment
gateway anyway?

Case study: me

2009: Launched Perch CMS on PayPal

2010: Switched to PayPoint.net with PayPal option

2011: Added our own PayPal integration back

2012: Switched to SagePay + PayPal

2014: Switched to Stripe + PayPal

… and then we built an
ecommerce product

Shop add-on for Perch CMS

Perch Shop

We wanted to support as many payment
gateways globally as we could.

We didn’t want to support any gateways, really.

An abstraction layer sounded like a great idea.

Enter Omnipay.
omnipay.thephpleague.com

http://omnipay.thephpleague.com

Omnipay

Omnipay is a payment processing library for
PHP.

It acts as an abstraction layer between your
code and the implementation details of using a
payment gateway API.

It has drivers for many different gateways.

Omnipay will fix your
payment gateway

problems like PDO fixes
your MySQL problems.

PDO for Payments

Omnipay gives you a consistent API across
different implementations.

That makes it easy to move code from project to
project, and means less code needs to be
changed if the underlying gateway changes.

PDO for Payments

Omnipay won’t make your MSSQL queries run
on Postgres. (So to speak.)

Different gateways still have different process
flows, and different weird requirements.

Omnipay just eases some of the pain and unifies
the interface.

Gateway support

Gateway drivers

Payment gateways are supported by drivers - a
basic Adaptor pattern.

Omnipay core provides the framework.

Each gateway then has its own driver.

There are official, third party and then custom
gateway drivers.

Official Gateways

2Checkout

Authorize.Net

Buckaroo

CardSave

Coinbase

Dummy

eWAY

First Data

GoCardless

Manual

Migs

Mollie

MultiSafepay

Netaxept (BBS)

Netbanx

PayFast

Payflow

PaymentExpress (DPS)

PayPal

Pin Payments

Sage Pay

SecurePay

Stripe

TargetPay

WorldPay

Third-party gateways

Agms

Alipay

Barclays ePDQ

CardGate

Cybersource

Cybersource SOAP

DataCash

ecoPayz

Fasapay

Fat Zebra

Globalcloudpay

Helcim

Neteller

Network Merchants
Inc. (NMI)

Pacnet

PaymentSense

PayPro

PayU

Realex

SecPay

Sisow

Skrill

Wirecard

Let’s take a look.

Set up the gateway <?php

use Omnipay\Omnipay;

// Setup payment gateway
$gateway = Omnipay::create('Stripe');
$gateway->setApiKey('abc123');

Calling Omnipay::create()
instantiates a new gateway
object.

To make that gateway object
useful, we need to set the
security credentials. For Stripe,
that’s an API key.

Other gateways have different
credentials that need to be set.

Make a card
payment

// Example card data
$cardData = [
 'number' => '4242424242424242',
 ‘expiryMonth' => '6',
 'expiryYear' => '2016',
 'cvv' => '123'
];

// Send purchase request
$response = $gateway->purchase([
 'amount' => '10.00',
 'currency' => 'USD',
 'card' => $cardData
])->send();

The gateway’s purchase()
method takes an amount, a
currency and details of the
payment card.

This can be literal card details
as shown, but is often a card
token.

After detailing the purchase,
the send() method sends the
message to the gateway.

Make a card
payment

// Send token purchase request
$response = $gateway->purchase([
 'amount' => '10.00',
 'currency' => 'USD',
 'token' => 'abcd1234'
])->send();

For token payments (like when
using stripe.js) you can pass in
a token instead of a card.

Payment response // Process response
if ($response->isSuccessful()) {

 // Payment was successful
 print_r($response);

} else {

 // Payment failed
 echo $response->getMessage();
}

The response has an
isSuccessful() method to check
for success.

Redirects

Many gateways respond to a payment request
with a URL to send the customer to.

This is often the case for payment flows where
the customer gives their card details direct to
the gateway and not the merchant site.

Payment response // Process response
if ($response->isSuccessful()) {

 // Payment was successful
 print_r($response);

} elseif ($response->isRedirect()) {

 // Redirect to offsite payment gateway
 $response->redirect();

} else {

 // Payment failed
 echo $response->getMessage();
}

The response has an
isSuccessful() method to check
for success.

Some gateways take payment
off-site. Those will test true for
isRedirect().

If neither is the case, the
payment failed.

Redirects

After redirection, the gateway will usually make
a call back to your code to indicate whether the
transaction was successful or not.

Complete after
redirect

$gateway->completePurchase([
 'amount' => '10.00',
 'currency' => 'USD',
 'transactionId' => '1234'
])->send();

When returning from an off-
site gateway, you need to
complete the purchase using
the same options.

Some gateways validate
options to make sure the
transaction hasn’t been
messed with.

Options

Options

Most actions involve an $options array.

It’s often quite hard to figure out what should be
in it, as every gateway expects something
different.

There are a few common options, however.

Options

card

token

amount

currency

description

transactionId

clientIp

returnUrl

cancelUrl

Setting options $response = $gateway->purchase([
 'amount' => '10.00',
 'currency' => 'USD',
 'card' => [...],
 'description' => 'Event tickets',
 'transactionId' => $order->id,
 'clientIp' => $_SERVER['REMOTE_ADDR'],
 'returnUrl' => ‘https://.../complete-payment/',
 'cancelUrl' => ‘https://.../failed-payment/'
])->send();

Options are passed into most
Omnipay action methods as an
associative array.

Cards

firstName

lastName

number

expiryMonth

expiryYear

startMonth

startYear

cvv

issueNumber

type

billingAddress1

billingAddress2

billingCity

billingPostcode

billingState

billingCountry

billingPhone

shippingAddress1

shippingAddress2

shippingCity

shippingPostcode

shippingState

shippingCountry

shippingPhone

company

email

Yay abstraction!

billingAddress1 ==> adrStreet

What can we do?

Types of transaction

Authorize (and then capture)

Purchase

Refund

Void

Authorize gateway = Omnipay::create('Stripe');
$gateway->setApiKey('abc123');

$response = $gateway->authorize([
 'amount' => '10.00',
 'currency' => 'USD',
 'card' => [...]
])->send();

if ($response->isSuccessful()) {
 $transactionId = $response->getTransactionReference();

 $response = $gateway->capture([
 'amount' => '10.00',
 'currency' => 'USD',
 'transactionId' => $transactionId
])->send();
}

Authorization is performed
with the authorize() method.
This enables us to get the
transaction reference.

When we want to take the
money, we use the capture()
method.

Purchase // Send token purchase request
$response = $gateway->purchase([
 'amount' => '10.00',
 'currency' => 'USD',
 'token' => 'abcd1234'
])->send();

$transactionId = $response->getTransactionReference();

Very straightforward, as we’ve
already seen.

Refund $response = $gateway->refund([
 'amount' => '10.00',
 'currency' => 'USD',
 'transactionId' => 'abc123'
])->send();

Transactions can be refunded,
although the bounds within
this can be performed may
depend on the gateway.

Void $response = $gateway->void([
 'amount' => '10.00',
 'currency' => 'USD',
 'transactionId' => 'abc123'
])->send();

A transaction can generally
only be voided within the first
24 hours.

Token billing $response = $gateway->createCard([
 'card' => [...],
])->send();

$cardId = $response->getTransactionReference();

Create, update and delete
cards.

Creating a card gives you a
cardReference which can be
used in future transactions.

Token billing $gateway->purchase([
 'amount' => '10.00',
 'cardReference' => 'abc123'
])->send();

Create, update and delete
cards.

Creating a card gives you a
cardReference which can be
used in future transactions.

What can’t we do?

Limitations

No recurring billing.

Not much of anything else.

e.g. getting location details

Omnipay has a fetchTransaction() method
which returns details of the transaction.

The response is gateway dependant, so may or
may not have the information we need.

If it doesn’t there may not be an Omnipay
method available.

Going out of scope

When you need to do something the gateway
driver doesn’t provide, things can get messy.

You either need to try to extend the driver, or
fall back to code outside of Omnipay.

If your requirement is common, you might want
to submit a patch.

Going out of scope

What you’re trying to do might not be a goal for
the project.

See also: recurring payments.

Contributing

Contributing

Gateway drivers are maintained as individual
open source projects with their own maintainers.

Making a change is as easy as making a Github
pull request… which is to say it’s of unknown
ease.

Could be accepted, or rejected, or ignored. Yay
open source.

Contributing

You can develop your own gateway driver.

There are guidelines to follow if you’d like it to
be adopted as official.

Yay open source.

What’s good?

What’s good

Learn one API to use with all providers

Write code that can be moved between projects

Makes the friction of switching between providers
much lower

Open source: benefit from others’ work

Open source: fix and contribute back when needed

What’s bad?

What’s bad?

API is abstracted, but gateway flow is not

Limited to a lowest common denominator for
functionality

No recurring payments

Open source: gateways are sometimes incomplete

Open source: getting PRs accepted can be hit and miss

On balance…

Omnipay is a useful library that takes a lot of
friction away.

Be aware of what problems it isn’t solving for
you, and use it for the problems it does solve.

Thanks!
@drewm

