
Performance Testing Chrome
Lessons learned from 4 years in the trenches

Hi, I’m Annie!
@anniesullie

Led performance testing on Chrome

from 2015-2018 after contributing

since 2011.

Previously worked on web

performance for Google Search and

Google Docs.

Now work on metrics for Chrome.

Wait, how do we define performance?
● Speed (page load speed, JavaScript speed, etc)

● Smoothness (animations, scrolling, etc)

● Memory usage

● Battery usage

● Binary size

Why do we do performance testing, anyway?
● First and foremost, to detect regressions.

○ Improving performance doesn’t help if you always regress.

○ Lab tests can narrow down regressions to specific commits.

● Performance tests can sometimes be used to measure

improvements.

○ Most useful early in development.

○ In most cases, we prefer A/B testing with end users to measure

improvements.

Competing Goals

R

e

p

r
o

d

u

c

i
b

i
l
i
t
y

R

e
a
l
i
s
m

U

n

d

e

r
s
t
a

n

d

a

b

i
l
i
t
y

Reproducibility
● Is this a real regression, or just noise?

● Can we repeat the test to narrow down to a commit?

● Can a developer reproduce the problem locally?

Realism

Reality changes over time
● Web content changes

● Devices users browse the web on change

● Network quality and speed changes

Understandability
● What does the test measure?

● What diagnostic information is available?

● What tools are available for local debugging?

Our Performance Testing Stack

Hardware

Test Framework

Benchmarks

Dashboard

Bisect

Hardware: Realism
● Test on real devices

○ Android

○ Windows

○ Mac

○ ChromeOS

○ Linux

● Use release official builds (unsigned)

Hardware: Reproducibility
● Each run of a test case on exact same device

● Run a “reference build” (Chrome stable) side-by-side with build

under test.

● Turn off things running in background as much as possible

● On Android, wait for device to cool between runs

● On Android, often throttle CPU

Test framework: Telemetry
● We call it telemetry.

● Source code:

https://github.com/catapult-project/catapult/tree/master/telemetry

● Cross-platform

○ Android

○ Windows

○ Mac

○ ChromeOS

○ Linux

https://github.com/catapult-project/catapult/tree/master/telemetry

Test framework: Telemetry
Two parts of a benchmark

● Metrics

○ Performance measurements

○ Generally independent of story

● Stories

○ The test case

○ Usually a web page

○ Supports user input, multi-page navigations, multi-app on Android

Telemetry: Realism
● Use WprGo to record/replay real web pages.

● End-to-end testing of thousands of real web pages

● Simulate network conditions like 3G

● Simulate user input, multi-page navigations.

Telemetry: Reproducibility
Provides a deterministic environment for repeatable results.

● Set up browser profile, caching, etc the same on each run.

● Replay recorded sites instead of live sites

● Network simulation for consistent network speed

Telemetry: Understandability
● Metrics are generated from chrome traces, which are available to

developers.

● Metrics can be broken down so it’s clear which components

contributed.

● Benchmark owner, documentation, and bug component required

in definition.

Telemetry: Understandability

Benchmarks: harnesses

User-facing

System Health

Rendering

V8 Runtime

Loading

Power

Media

Memory

Startup

WebRTC

blink_perf

JavaScript/DOM

cross-browser

C++

microbenchmarks

In-page Micro C++ Micro

User-facing benchmarks focus on realism
● Measuring key metrics on thousands of real web pages

● Get end-to-end performance measurements across the entire

codebase

In-page Microbenchmarks focus on Usability
● Easy to compare results between browsers

● Can easily read source and inspect in devtools

● Easy to profile/trace

C++ Microbenchmarks have reproducibility and usability
● Easy to profile

● Smallest amount of code under test

Perf Dashboard
● Source code:

https://github.com/catapult-project/catapult/tree/master/dashboard

● Benchmark results uploaded after every run.

● Automatically detects and groups regressions in timeseries.

● Integrates with bug tracker.

● Integrates with bisect tool.

https://github.com/catapult-project/catapult/tree/master/dashboard

Perf Dashboard Reproducibility: Regression detection

Perf Dashboard Reproducibility: Regression Detection
● Uses a sliding-window step detection algorithm.

○ Runs each time a new data point is added

○ Divide each window into two possible segments, trying every possible division

○ Find the greatest difference between two segments

○ Check if greatest difference passes filters

● Filters are user-configurable

○ Segment size

○ Absolute change

○ Relative change

○ Multiple of standard deviation

○ Steppiness

https://docs.google.com/document/d/11XxKRCsMKh5F51jb5B5a4ArkYfJZvpkLWnSQWSo7MHY/edit

Perf Dashboard: Understandability
● Automatically links traces generated by telemetry

● Allows users to re-run test on same bot with additional trace

categories

● Links test ownership and documentation

● Shows list of performance regressions/improvements at each

commit

Bisection: Pinpoint
● Source code:

https://github.com/catapult-project/catapult/tree/master/dashboard/

dashboard/pinpoint

● Bisection kicked off by perf dashboard for regressions

● Also supports test failure/flakiness

https://github.com/catapult-project/catapult/tree/master/dashboard/dashboard/pinpoint
https://github.com/catapult-project/catapult/tree/master/dashboard/dashboard/pinpoint

Pinpoint Reproducibility: Bisection algorithm
● Algorithm explainer

● Considers the set of results from all runs at a given revision as a

distribution of samples.

● Uses multiple hypothesis tests in comparing distributions. T-test

isn’t appropriate because data is not normally distributed.

● Has custom sharding algorithm to make use of multiple devices

https://docs.google.com/document/d/1NylyH74RVT8ZnEtWse6vpRb1vSXTyIJCZmZWkqNwiGg/edit?usp=sharing

Pinpoint Reproducibility: Bisection Results

Pinpoint Understandability
● Links to traces from all runs

● Allows re-run with more tracing categories

● Integrates with bugs database

● Can run A/B test on any benchmark/bot on unsubmitted change

