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* About me

- 0SS Contributor
- PHP Certified
- Zend Certification Advisory Board
- PHP-Fig voting member (IBM i Toolkit)
- Consultant at Zend Technologies
- Organizer SoFloPHP (South Florida)
- Organizer SunshinePHP (Miami)
- Long distance (ultra) runner
- Photography Enthusiast
zend

- Judo Black Belt Instructor CERTIFIED

ENGINEER

/ SUNSHINEPHP

CONFERENCE
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- | am the
) PHP Ninja!!!

SoFloPHP
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e Fan of iteration

- Pretty much everything requires iteration to do well:

* Long distance running

* Judo

* Development

* Evading project managers
* Refactoring!
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* What Can | Do?
- Estimation
- Coding (actual refactoring)

— Algorithms

— Convince Business

— Silver Bullet
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* Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?
* Desire
* Bored
* Perceived need
* To gain something
- Speed
- Functionality

- When?

* Next 6 months, year(s), decade

* Realistic time
e NOW!
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* Typical Loop
- Business Responses

* No time
* No money

* No need

 Things are “good enough”
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* Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

- Old information system remaining in operation within an Organization
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Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -
https://www.sciencedirect.com/science/article/pii/5221083271630126

0#b0025

2001 Brooke and Ramage defined legacy as:

Old information system remaining in operation within an Organization

Business critical, resisting modification as failure would cause significant impact
on business

Based on outdated technology but critical day-to-day operations
Built when processing and storage was much more expensive

Poorly documented
Lack of design
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Case Study

- Modernization Drivers

» Skillset shortages (old technologies)
* Technical needs

 Business needs

* Personal bias
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Case Study

- e s

— Cost Reduction Strategies

Ordinary maintenance
Reverse engineering
Restructuring
Re-engineering
Migration

Discard

Wrapping

Outsource?

Freeze

Carry On

Replacement with commercial off-the-shelf software and discarding
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* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable
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* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable
- Company and project specific
- Continuously refined

- Gains depth of understanding of business
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* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis
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* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people

e View of information: resource analysis

e Costs: major costs, both financial and nonfinancial
* Benefits: both financial and nonfinancial

e Risks: major sources of risk
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* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf

— Strategies
* Replacing

TABLE II.
WEIGHTED DECISION-MAKING GRID
Pros Score Cons Score
System functionality 5 Lack of web-services 3
Modification delivery 5 Usability problems 3
time
Team support 4 Report generation 3
Technical 2 Architectural Style 2
Requirements
DB technology 3 Oracle 6i problems 3
License 3| Business process problem 5
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* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf
— Strategies
* Replacing
* Maintaining TABLE IL
* Re-architecting WEIGHTED DECISION-MAKING GRID

* Extending by wrapping Pros Score Cons Score
System functionality 5 Lack of web-services 3
Modification delivery 5 Usability problems 3
time

Team support 4 Report generation 3
Technical 2 Architectural Style 2

Requirements
DB technology 3 Oracle 6i problems 3
License 3| Business process problem 5
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* How Do We Know?

— Application

* A Decisional Framework to Measure System Dimensions of Legacy Application
for Rejuvenation through Reengineering - 2011 (by Er. Anand Rajavat, Dr.
(Mrs.) Vrinda Tokekar) -
https://www.ijcaonline.org/volume16/number2/pxc3872674.pdf

- System domain

* Customer requirements

* Orgs strategic goals

e Operational env

e Risk management
i. Organizational
ii. Resource
iii.Development
iv.Personal
v. User Requirement
vi.Specialization
vii.Team
viii.Communication
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Business value

Economic value
Market value
Profitability index

Internal rate of return (IRR) |

Data value

Percentage of mission
critical archives

Percentage of application
dependant archives

Utility

Business function coverage rate |

Actual usage frequency ‘

Customer satisfaction metrics |

Specialisation ‘

Percentage of highly specialised
functions

Percentage of generic functions

Legend

Technical value Organisational infrastructure ‘

Development & maintenance
Internal or outsourced?

Maintainability
Lines of code (LOC), Function points (FP) ‘
Control Flow, Knots |

Technical maturity

Commitment to training |

Cyclomatic complexity |

Skill level of system support ‘

Dead code rate |

Response to change ‘

Decompostability | Architecture

Architecture modularity |

Percentage of modules with
separation of concerns

Consumption

Extensibility

Interoperability

Deterioration

Backlog increase
Defect rate increase—l

Response-time increase

Maintenance time per
request increase

Obsolescence
System age

Operating system version |

Hardware version

Technical support availability |

Security
Legality

System evolution required
for business goals?

| DeLuciaetal. | |

Alkazemi et al. || Ransometal. |

Source

Adapted from Alkazemi et al. [5], De Lucia et al. [7] and Ransom et al. [8]
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A
Reengineer to _ _
improve quality. High value High value Continue normal
Replace with COTS ? Low quality High quality system maintenance.
if available. L
=)
©
=
w
%]
Q
c
‘©
>
m - .
_ o Retain while not
Expensive to maintain Low value L_OW Valu_e expensive to maintain.
and low rate of return. Low quality High quality Decommission if expensive
Decommission. changes become necessary.
>

Technical quality

Source: Sommerville [14]
1Commercial off-the-shelf system
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* Case Study

- Example Assessment

* Step #1 - Does application meet or exceed definition of “Legacy”?

* Answers: Yes, No, Maybe, Don’t know

— Business Critical

- Old

- Changed to meet organizational needs

- Degrades as changes made

- Maintenance cost increase as changes made
— Obsolete languages

- Poor, if any, documentation

- Inadequate data management

- Limited support capability
- Limited support capacity
- Lacks architecture to evolve to meet emerging requirements
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Case Study

- Example Assessment

* Step #1 - Technical value attribute assessment
* Answers: Yes, No, Don’t know

- Maintainability
 LOC
e Control Flow
* Cyclomatic complexity
* Dead code fate
- Decompostability/Architecture

* Modularity

* % of modules with separation of concerns
* Consumption

* Extensibility

e Style

* Interoperability
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* Case Study

- Example Assessment
 Step #1 - Cont’d
* Answers: Yes, No, Don’t know

- Deterioration

* Backlog increase

* Defect rate increase

* Response-time increase

* Maintanance time per request increase
— Obsolescence

* System age

* Operating system version

* Hardware version

* Technical support availability

* Security

* Legality

e System evolution required for business goals?
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* Case Study

- Example Assessment

» Step #2 - Business value attribute assessment

 Answers: Yes, No, Don’t know

- Economic value

* Market value
* Profitability index
* IRR

- Data value

* % of mission critical archives

* % of application dependent archives
- Utility

* Business function coverage rate

* Actual usage frequency

e Customer/user satisfaction metric
— Specialization

* % of highly specialized functions

* % of generic functions
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* Case Study

- Example Assessment

* Step #3 - Organizational infrastructure attribute assessment
* Answers: Yes, No, Don’t know

- Development & maintenance internal or outsourced?
— Technical maturity

- Commitment to training

- Skill level of system support

- Response to change
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Case Study

- Example Assessment

* Step #4 - Calculations

— Calculate all responses to 1 - 5 values (don’t know = 0)
— To easily plot on decisional matrix

Business value Y N D/K® 1 2 3 4 5

attributes
Economic value

Market value 8 1 1 1 9

4.90
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* Case Study
- Example Assessment

* Step #5 - Conversion

- Convert Y, N, DK to numeric values and Avg %

individual business attribute value =
Y.(recoded responses for the individual business attribute)

Y.(number of recoded responses for the individual business attribute #0)

value of business attribute =
Y.(value of individual business attributes)

Y. (number of recoded responses for the individual business attributes #0)
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 Case Stud

- Example Assessment

* Step #6 - Plotting

- Display points on the decisional matrix

5.00 &
<
> @
Reengineer to © % Continue normal
improve quality. > & t int
Replace with COTS = ST R
if available. .§ ¢
£
© 3.00
%]
w
Q
- o = Retain while not
Expensive to maintain = expensive to maintain.
and low rate of return. Decommission if expensive
Decommission. changes become necessary.
1.00
1.00 3.00 5.00

Technical attribute value
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* Superhero

- Status Granted
 It’s YOU!
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* Supervillain
- Professor LOC

* Fighting tools
- PHPLoc
- PHPmd (codesize)

$ php phploc.phar -v --names "*.php" --exclude 'vendor'
/path/to/project/my-project/module/ > /path/to/project/phpgatool-

results/phploc.txt

$ php phpmd.phar /path/to/project/my-project/module/ xml codesize --exclude
'vendor' --reportfile ' /path/to/project/phpgatool-
results/phpmd codesize output.xml'
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The Data
- PHPLoc

Directories 77
Files 408
Size
Lines of Code (LOC) 139013
Comment Lines of Code (CLOC) 39849
Non-Comment Lines of Code (NCLOC) 99164
Logical Lines of Code (LLOC) 33765
Classes 31432
Average Class Length 82
Average Method Length 5
Functions 6]
Average Function Length 0]
Not in classes or functions 2333
Complexity
Cyclomatic Complexity / LLOC 0.17
Cyclomatic Complexity / Number of Methods 2.10
Dependencies
Global Accesses 140
Global Constants 6]
Global Variables 6]
Super-Global Variables 140
Attribute Accesses 7972
Non-Static 7972
Static 6]
Method Calls 23650
Non-Static 23299
Static 351
Structure
Namespaces 60
Interfaces 6]
Traits ¢]
Classes 379
Abstract Classes €]
Concrete Classes 379

Methods 5307

(28.67%)
(71.33%)
(24.29%)
(93.09%)

(0.00%)

(6.91%)

(0.00%)
(0.00%)
(100.00%)

(100.00%)
(0.00%)

(98.52%)
(1.48%)

(0.00%)
(100.00%)
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e The Data
- PHPmd

—<violation beginline="28" endline="1057" rule="ExcessiveClassLength" ruleset="Code Size Rules" package="0Other\Controller"
externalInfoUrl="http://phpmd.org/rules/codesize.html#excessiveclasslength" class="DashboardController" priority="3">
The class DashboardController has 1030 lines of code. Current threshold is 1000. Avoid really long classes.
</violation>
—<violation beginline="28" endline="1057" rule="TooManyMethods" ruleset="Code Size Rules" package="0Other\Controller"
externallnfoUrl="http://phpmd.org/rules/codesize.html#toomanymethods" class="DashboardController" priority="3">
The class DashboardController has 13 methods. Consider refactoring DashboardController to keep number of methods under 10.
</violation>
—<violation beginline="28" endline="1057" rule="ExcessiveClassComplexity" ruleset="Code Size Rules" package="0Other\Controller"
externallnfoUrl="http://phpmd.org/rules/codesize.html#excessiveclasscomplexity" class="DashboardController" priority="3">
The class DashboardController has an overall complexity of 143 which is very high. The configured complexity threshold is 50.
</violation>
—<violation beginline="78" endline="287" rule="CyclomaticComplexity" ruleset="Code Size Rules" package="0Other\Controller"
externalInfoUrl="http://phpmd.org/rules/codesize.html#cyclomaticcomplexity" class="DashboardController" method="dashboardAction"
priority="3">
The method dashboardAction() has a Cyclomatic Complexity of 24. The configured cyclomatic complexity threshold is 10.
</violation>
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* Ray Gun

— Docker Images

% Q Search

PUBLIC | AUTOMATED BUILD

adamculp/php-code-guality v

Repo Info Tags Dockerfile Build Details

Short Description

Image with PHP code quality, PHP static analysis, PHPUnit, PHP compatibility, and PHP QA tools.

Full Description

php-code-guality

The objective is to include multiple PHP code quality tools (phpgatools and more) in an easy to use Docker
image. The

tools include php-ga-tools, PHP static analysis, lines of PHP code report, mess detector, code smell
highlighting,

copy/paste detection, and the applications compatibility against versions of PHP.

More specifically this includes:

Explore Help Sign up Sign In

Docker Pull Command 0

docker pull adamculp/php-code-quality

Owner

@ adamculp

=

Source Repository

© adamculp/php-code-quality




Release Your Refactoring Superpower

e Arsenal

- 1 million commits

Rename Variable/Method/Class 77%
Extract Constant

Make Type Global

Rename Refactoring Command
Move/Extract Class 1%
Move/Extract Method 13%

Modify Method Parameters




* Thank you!

- Code: https://github.com/adamculp/

Adam Culp
http://www.geekyboy.com
http://RunGeekRadio.com

Twitter @adamculp

Questions?



https://github.com/adamculp/
http://www.geekyboy.com/
http://RunGeekRadio.com/
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