Release Your Refactoring
Superpower

By:
Adam Culp
Twitter: @adamculp




Release Your Refactoring Superpower

* About me

- 0SS Contributor
- PHP Certified
- Zend Certification Advisory Board
- PHP-Fig voting member (IBM i Toolkit)
- Consultant at Zend Technologies
- Organizer SoFloPHP (South Florida)
- Organizer SunshinePHP (Miami)
- Long distance (ultra) runner
- Photography Enthusiast
zend

- Judo Black Belt Instructor CERTIFIED

ENGINEER

/ SUNSHINEPHP

CONFERENCE




Release Your Refactoring Superpower

- | am the
) PHP Ninja!!!

SoFloPHP




Release Your Refactoring Superpower

- s - - =

e Fan of iteration

- Pretty much everything requires iteration to do well:

* Long distance running

* Judo

* Development

* Evading project managers
* Refactoring!




Release Your Refactoring Superpower

e e

by

* What Can | Do?

- Estimation




Release Your Refactoring Superpower

L i

* What Can | Do?

- Estimation

- Lo —— P g

by

- Coding (actual refactoring)




Release Your Refactoring Superpower

- e T ——— P g

* What Can | Do?
- Estimation

- Coding (actual refactoring)

— Algorithms




Release Your Refactoring Superpower

* What Can | Do?

L i

by

Estimation
Coding (actual refactoring)

Algorithms

Convince Business

s T e —— ey i



Release Your Refactoring Superpower

e e PR Ny e
* What Can | Do?
- Estimation
- Coding (actual refactoring)

— Algorithms

— Convince Business

— Silver Bullet




Release Your Refactoring Superpower

e Modernization?

- How?

* New infrastructure (servers, technology, etc.)




Release Your Refactoring Superpower

e Modernization?

- How?

* New infrastructure (servers, technology, etc.)

* New frameworks or libraries




Release Your Refactoring Superpower

[ e a— 2
* Modernization?
- How?
* New infrastructure (servers, technology, etc.)

* New frameworks or libraries

* New programming language




Release Your Refactoring Superpower

[ e a— 2
* Modernization?
- How?
* New infrastructure (servers, technology, etc.)

* New frameworks or libraries

* New programming language
* New DB




Release Your Refactoring Superpower

[ e a— 2
* Modernization?
- How?
* New infrastructure (servers, technology, etc.)

* New frameworks or libraries

 New programming language
* New DB
- Why?

* Desire




Release Your Refactoring Superpower

e Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?

* Desire

* Bored




Release Your Refactoring Superpower

e Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?
* Desire

* Bored

* Perceived need




Release Your Refactoring Superpower

e Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?
* Desire
* Bored
* Perceived need

* To gain something
- Speed

- Functionality




Release Your Refactoring Superpower

 Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
 New programming language
* New DB
- Why?
* Desire
* Bored
* Perceived need
* To gain something
- Speed

- Functionality

- When?

* Next 6 months, year(s), decade




Release Your Refactoring Superpower

* Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?
* Desire
* Bored
* Perceived need

* To gain something
- Speed
— Functionality

- When?

* Next 6 months, year(s), decade

* Realistic time




Release Your Refactoring Superpower

* Modernization?

- How?
* New infrastructure (servers, technology, etc.)
* New frameworks or libraries
* New programming language
* New DB
- Why?
* Desire
* Bored
* Perceived need
* To gain something
- Speed
- Functionality

- When?

* Next 6 months, year(s), decade

* Realistic time
e NOW!




Release Your Refactoring Superpower

e il

e Rewrite FTW!




Release Your Refactoring Superpower

e el

* Typical Loop

- Business Responses

* No time




Release Your Refactoring Superpower

e el

* Typical Loop
- Business Responses

* No time

* No money




Release Your Refactoring Superpower

* Typical Loop
- Business Responses

* No time

* No money

* No need




Release Your Refactoring Superpower

* Typical Loop
- Business Responses

* No time
* No money

* No need

 Things are “good enough”




Release Your Refactoring Superpower

| o - o .= : = — = e o T ———

e The Fix




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

- Old information system remaining in operation within an Organization




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

- Old information system remaining in operation within an Organization

— Business critical, resisting modification as failure would cause significant impact
on business




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

- Old information system remaining in operation within an Organization

— Business critical, resisting modification as failure would cause significant impact
on business

- Based on outdated technology but critical day-to-day operations




Release Your Refactoring Superpower

Case Study
— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by

James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

- Old information system remaining in operation within an Organization

— Business critical, resisting modification as failure would cause significant impact
on business

- Based on outdated technology but critical day-to-day operations
- Built when processing and storage was much more expensive




Release Your Refactoring Superpower

e g

Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -

https://www.sciencedirect.com/science/article/pii/5221083271630126
0#b0025

2001 Brooke and Ramage defined legacy as:

Old information system remaining in operation within an Organization

Business critical, resisting modification as failure would cause significant impact
on business

Based on outdated technology but critical day-to-day operations
Built when processing and storage was much more expensive
Poorly documented




Release Your Refactoring Superpower

e g

Case Study

— Managing legacy system costs: A case study of a meta-assessment model
to identify solutions in a large financial services company - 2017 (by
James Crotty, lvan Horrocks) -
https://www.sciencedirect.com/science/article/pii/5221083271630126

0#b0025

2001 Brooke and Ramage defined legacy as:

Old information system remaining in operation within an Organization

Business critical, resisting modification as failure would cause significant impact
on business

Based on outdated technology but critical day-to-day operations
Built when processing and storage was much more expensive

Poorly documented
Lack of design




Release Your Refactoring Superpower

- e s

L i

* Case Study

- Modernization Drivers

» Skillset shortages (old technologies)




Release Your Refactoring Superpower

- e s

L i

* Case Study

- Modernization Drivers

» Skillset shortages (old technologies)

* Technical needs




Release Your Refactoring Superpower

- e s

* Case Study
— Modernization Drivers

» Skillset shortages (old technologies)

* Technical needs

 Business needs




Release Your Refactoring Superpower

- e s

L i

Case Study

- Modernization Drivers

» Skillset shortages (old technologies)
* Technical needs

 Business needs

* Personal bias




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Cost Reduction Strategies

* Ordinary maintenance




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Cost Reduction Strategies

* Ordinary maintenance

* Reverse engineering




Release Your Refactoring Superpower

- e s

* Case Study
— Cost Reduction Strategies

* Ordinary maintenance

* Reverse engineering

* Restructuring




Release Your Refactoring Superpower

- e s

L i

Case Study

— Cost Reduction Strategies

* Ordinary maintenance
* Reverse engineering

* Restructuring

* Re-engineering




Release Your Refactoring Superpower

L i

Case Study

— Cost Reduction Strategies

- e s

Ordinary maintenance
Reverse engineering
Restructuring

Re-engineering

Migration




Release Your Refactoring Superpower

L i

Case Study

— Cost Reduction Strategies

- e s

Ordinary maintenance
Reverse engineering
Restructuring
Re-engineering

Migration

Discard




Release Your Refactoring Superpower

L i

Case Study

— Cost Reduction Strategies

o

Ordinary maintenance
Reverse engineering
Restructuring
Re-engineering
Migration

Discard

Wrapping




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Cost Reduction Strategies

* Ordinary maintenance
* Reverse engineering

* Restructuring

* Re-engineering

* Migration

* Discard

* Wrapping

e Qutsource?




Release Your Refactoring Superpower

L i

Case Study

— Cost Reduction Strategies

- e s

Ordinary maintenance
Reverse engineering
Restructuring
Re-engineering
Migration

Discard

Wrapping

Outsource?

Freeze




Release Your Refactoring Superpower

- e s

L i

* Case Study

— Cost Reduction Strategies

* Ordinary maintenance
* Reverse engineering

* Restructuring

* Re-engineering

* Migration

* Discard

* Wrapping

* Outsource?

* Freeze

* Carry On




Release Your Refactoring Superpower

L i

Case Study

- e s

— Cost Reduction Strategies

Ordinary maintenance
Reverse engineering
Restructuring
Re-engineering
Migration

Discard

Wrapping

Outsource?

Freeze

Carry On

Replacement with commercial off-the-shelf software and discarding




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable
- Company and project specific




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable

- Company and project specific

- Continuously refined




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

- Measurement

* A Method for Assessing Legacy Systems for Evolution - 1998 (by Jane
Ransom, lan Sommerville, and lan Warren) -

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.128.9889&rep=rep1&type=pdf

- Legacy = business critical = cost not justifiable
- Company and project specific
- Continuously refined

- Gains depth of understanding of business




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis
* Vision: global summary of the unit




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis
* Vision: global summary of the unit
* Logic: rationale for vision




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis
Vision: global summary of the unit
Logic: rationale for vision
Structure: of the organisation




Release Your Refactoring Superpower

- s - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people




Release Your Refactoring Superpower

- . - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people

e View of information: resource analysis




Release Your Refactoring Superpower

- = - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people

e View of information: resource analysis

e Costs: major costs, both financial and nonfinancial




Release Your Refactoring Superpower

- . - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people

e View of information: resource analysis

e Costs: major costs, both financial and nonfinancial
* Benefits: both financial and nonfinancial




Release Your Refactoring Superpower

- . - - =

* How Do We Know?

— Criteria

* Decision Model for Legacy Systems - 1999 (by . H. Bennett, M. Ramage, and
M. Munro) - ftp://ftp.inf.puc-
rio.br/pub/docs/FomularioSolicitacoes/mariliaGFerreira-09-13-7.pdf

- Based more upon organizational points

* Boundary: the unit of analysis

* Vision: global summary of the unit

* Logic: rationale for vision

e Structure: of the organisation

* Roles: organizational roles of people

e View of information: resource analysis

e Costs: major costs, both financial and nonfinancial
* Benefits: both financial and nonfinancial

e Risks: major sources of risk




Release Your Refactoring Superpower

- = - - =

* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf

— Strategies
* Replacing

TABLE II.
WEIGHTED DECISION-MAKING GRID
Pros Score Cons Score
System functionality 5 Lack of web-services 3
Modification delivery 5 Usability problems 3
time
Team support 4 Report generation 3
Technical 2 Architectural Style 2
Requirements
DB technology 3 Oracle 6i problems 3
License 3| Business process problem 5




Release Your Refactoring Superpower

- = - - =

* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf

— Strategies
* Replacing
* Maintaining

TABLE II.
WEIGHTED DECISION-MAKING GRID

Pros Score Cons Score

System functionality 5 Lack of web-services 3

Modification delivery 5 Usability problems 3

time

Team support 4 Report generation 3

Technical 2 Architectural Style 2
Requirements

DB technology 3 Oracle 6i problems 3

License 3| Business process problem 5




Release Your Refactoring Superpower

- = - - =

* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf

— Strategies

* Replacing

* Maintaining TABLE II

* Re-architecting WEIGHTED DECISION-MAKING GRID
Pros Score Cons Score
System functionality 5 Lack of web-services 3
Modification delivery 5 Usability problems 3
time

Team support 4 Report generation 3
Technical 2 Architectural Style 2

Requirements
DB technology 3 Oracle 6i problems 3
License 3| Business process problem 5




Release Your Refactoring Superpower

- . - - =

* How Do We Know?

— Structure

* A Framework to Assess Legacy Software Systems - 2014 (by Basem Y.
Alkazemi) -

https://pdfs.semanticscholar.org/da50/7665a6c3bacb5559996bd436a9f76aa
4e5a7.pdf
— Strategies
* Replacing
* Maintaining TABLE IL
* Re-architecting WEIGHTED DECISION-MAKING GRID

* Extending by wrapping Pros Score Cons Score
System functionality 5 Lack of web-services 3
Modification delivery 5 Usability problems 3
time

Team support 4 Report generation 3
Technical 2 Architectural Style 2

Requirements
DB technology 3 Oracle 6i problems 3
License 3| Business process problem 5




Release Your Refactoring Superpower

- = - - =

* How Do We Know?

— Application

* A Decisional Framework to Measure System Dimensions of Legacy Application
for Rejuvenation through Reengineering - 2011 (by Er. Anand Rajavat, Dr.
(Mrs.) Vrinda Tokekar) -
https://www.ijcaonline.org/volume16/number2/pxc3872674.pdf

- System domain

* Customer requirements

* Orgs strategic goals

e Operational env

e Risk management
i. Organizational
ii. Resource
iii.Development
iv.Personal
v. User Requirement
vi.Specialization
vii.Team
viii.Communication




Release Your Refactoring Superpower

Business value

Economic value
Market value
Profitability index

Internal rate of return (IRR) |

Data value

Percentage of mission
critical archives

Percentage of application
dependant archives

Utility

Business function coverage rate |

Actual usage frequency ‘

Customer satisfaction metrics |

Specialisation ‘

Percentage of highly specialised
functions

Percentage of generic functions

Legend

Technical value Organisational infrastructure ‘

Development & maintenance
Internal or outsourced?

Maintainability
Lines of code (LOC), Function points (FP) ‘
Control Flow, Knots |

Technical maturity

Commitment to training |

Cyclomatic complexity |

Skill level of system support ‘

Dead code rate |

Response to change ‘

Decompostability | Architecture

Architecture modularity |

Percentage of modules with
separation of concerns

Consumption

Extensibility

Interoperability

Deterioration

Backlog increase
Defect rate increase—l

Response-time increase

Maintenance time per
request increase

Obsolescence
System age

Operating system version |

Hardware version

Technical support availability |

Security
Legality

System evolution required
for business goals?

| DeLuciaetal. | |

Alkazemi et al. || Ransometal. |

Source

Adapted from Alkazemi et al. [5], De Lucia et al. [7] and Ransom et al. [8]




Release Your Refactoring Superpower

A
Reengineer to _ _
improve quality. High value High value Continue normal
Replace with COTS ? Low quality High quality system maintenance.
if available. L
=)
©
=
w
%]
Q
c
‘©
>
m - .
_ o Retain while not
Expensive to maintain Low value L_OW Valu_e expensive to maintain.
and low rate of return. Low quality High quality Decommission if expensive
Decommission. changes become necessary.
>

Technical quality

Source: Sommerville [14]
1Commercial off-the-shelf system




Release Your Refactoring Superpower

- e s

L i

* Case Study

- Example Assessment

* Step #1 - Does application meet or exceed definition of “Legacy”?

* Answers: Yes, No, Maybe, Don’t know

— Business Critical

- Old

- Changed to meet organizational needs

- Degrades as changes made

- Maintenance cost increase as changes made
— Obsolete languages

- Poor, if any, documentation

- Inadequate data management

- Limited support capability
- Limited support capacity
- Lacks architecture to evolve to meet emerging requirements




Release Your Refactoring Superpower

- e s

L i

Case Study

- Example Assessment

* Step #1 - Technical value attribute assessment
* Answers: Yes, No, Don’t know

- Maintainability
 LOC
e Control Flow
* Cyclomatic complexity
* Dead code fate
- Decompostability/Architecture

* Modularity

* % of modules with separation of concerns
* Consumption

* Extensibility

e Style

* Interoperability




Release Your Refactoring Superpower

- e s

L i

* Case Study

- Example Assessment
 Step #1 - Cont’d
* Answers: Yes, No, Don’t know

- Deterioration

* Backlog increase

* Defect rate increase

* Response-time increase

* Maintanance time per request increase
— Obsolescence

* System age

* Operating system version

* Hardware version

* Technical support availability

* Security

* Legality

e System evolution required for business goals?




Release Your Refactoring Superpower

i . g __.‘-"-:':',.'_"“"-—- vt - e ———

o

L i

* Case Study

- Example Assessment

» Step #2 - Business value attribute assessment

 Answers: Yes, No, Don’t know

- Economic value

* Market value
* Profitability index
* IRR

- Data value

* % of mission critical archives

* % of application dependent archives
- Utility

* Business function coverage rate

* Actual usage frequency

e Customer/user satisfaction metric
— Specialization

* % of highly specialized functions

* % of generic functions




Release Your Refactoring Superpower

- e s

L i

* Case Study

- Example Assessment

* Step #3 - Organizational infrastructure attribute assessment
* Answers: Yes, No, Don’t know

- Development & maintenance internal or outsourced?
— Technical maturity

- Commitment to training

- Skill level of system support

- Response to change




Release Your Refactoring Superpower

- e s

L i

Case Study

- Example Assessment

* Step #4 - Calculations

— Calculate all responses to 1 - 5 values (don’t know = 0)
— To easily plot on decisional matrix

Business value Y N D/K® 1 2 3 4 5

attributes
Economic value

Market value 8 1 1 1 9

4.90




Release Your Refactoring Superpower

* Case Study
- Example Assessment

* Step #5 - Conversion

- Convert Y, N, DK to numeric values and Avg %

individual business attribute value =
Y.(recoded responses for the individual business attribute)

Y.(number of recoded responses for the individual business attribute #0)

value of business attribute =
Y.(value of individual business attributes)

Y. (number of recoded responses for the individual business attributes #0)




Release Your Refactoring Superpower

 Case Stud

- Example Assessment

* Step #6 - Plotting

- Display points on the decisional matrix

5.00 &
<
> @
Reengineer to © % Continue normal
improve quality. > & t int
Replace with COTS = ST R
if available. .§ ¢
£
© 3.00
%]
w
Q
- o = Retain while not
Expensive to maintain = expensive to maintain.
and low rate of return. Decommission if expensive
Decommission. changes become necessary.
1.00
1.00 3.00 5.00

Technical attribute value




Release Your Refactoring Superpower

* Superhero

- Status Granted
 It’s YOU!




Release Your Refactoring Superpower

* Supervillain
- Professor LOC

* Fighting tools
- PHPLoc
- PHPmd (codesize)

$ php phploc.phar -v --names "*.php" --exclude 'vendor'
/path/to/project/my-project/module/ > /path/to/project/phpgatool-

results/phploc.txt

$ php phpmd.phar /path/to/project/my-project/module/ xml codesize --exclude
'vendor' --reportfile ' /path/to/project/phpgatool-
results/phpmd codesize output.xml'




Release Your Refactoring Superpower

The Data
- PHPLoc

Directories 77
Files 408
Size
Lines of Code (LOC) 139013
Comment Lines of Code (CLOC) 39849
Non-Comment Lines of Code (NCLOC) 99164
Logical Lines of Code (LLOC) 33765
Classes 31432
Average Class Length 82
Average Method Length 5
Functions 6]
Average Function Length 0]
Not in classes or functions 2333
Complexity
Cyclomatic Complexity / LLOC 0.17
Cyclomatic Complexity / Number of Methods 2.10
Dependencies
Global Accesses 140
Global Constants 6]
Global Variables 6]
Super-Global Variables 140
Attribute Accesses 7972
Non-Static 7972
Static 6]
Method Calls 23650
Non-Static 23299
Static 351
Structure
Namespaces 60
Interfaces 6]
Traits ¢]
Classes 379
Abstract Classes €]
Concrete Classes 379

Methods 5307

(28.67%)
(71.33%)
(24.29%)
(93.09%)

(0.00%)

(6.91%)

(0.00%)
(0.00%)
(100.00%)

(100.00%)
(0.00%)

(98.52%)
(1.48%)

(0.00%)
(100.00%)




Release Your Refactoring Superpower

e The Data
- PHPmd

—<violation beginline="28" endline="1057" rule="ExcessiveClassLength" ruleset="Code Size Rules" package="0Other\Controller"
externalInfoUrl="http://phpmd.org/rules/codesize.html#excessiveclasslength" class="DashboardController" priority="3">
The class DashboardController has 1030 lines of code. Current threshold is 1000. Avoid really long classes.
</violation>
—<violation beginline="28" endline="1057" rule="TooManyMethods" ruleset="Code Size Rules" package="0Other\Controller"
externallnfoUrl="http://phpmd.org/rules/codesize.html#toomanymethods" class="DashboardController" priority="3">
The class DashboardController has 13 methods. Consider refactoring DashboardController to keep number of methods under 10.
</violation>
—<violation beginline="28" endline="1057" rule="ExcessiveClassComplexity" ruleset="Code Size Rules" package="0Other\Controller"
externallnfoUrl="http://phpmd.org/rules/codesize.html#excessiveclasscomplexity" class="DashboardController" priority="3">
The class DashboardController has an overall complexity of 143 which is very high. The configured complexity threshold is 50.
</violation>
—<violation beginline="78" endline="287" rule="CyclomaticComplexity" ruleset="Code Size Rules" package="0Other\Controller"
externalInfoUrl="http://phpmd.org/rules/codesize.html#cyclomaticcomplexity" class="DashboardController" method="dashboardAction"
priority="3">
The method dashboardAction() has a Cyclomatic Complexity of 24. The configured cyclomatic complexity threshold is 10.
</violation>




Release Your Refactoring Superpower

e el

* Ray Gun

— Docker Images

% Q Search

PUBLIC | AUTOMATED BUILD

adamculp/php-code-guality v

Repo Info Tags Dockerfile Build Details

Short Description

Image with PHP code quality, PHP static analysis, PHPUnit, PHP compatibility, and PHP QA tools.

Full Description

php-code-guality

The objective is to include multiple PHP code quality tools (phpgatools and more) in an easy to use Docker
image. The

tools include php-ga-tools, PHP static analysis, lines of PHP code report, mess detector, code smell
highlighting,

copy/paste detection, and the applications compatibility against versions of PHP.

More specifically this includes:

Explore Help Sign up Sign In

Docker Pull Command 0

docker pull adamculp/php-code-quality

Owner

@ adamculp

=

Source Repository

© adamculp/php-code-quality




Release Your Refactoring Superpower

e Arsenal

- 1 million commits

Rename Variable/Method/Class 77%
Extract Constant

Make Type Global

Rename Refactoring Command
Move/Extract Class 1%
Move/Extract Method 13%

Modify Method Parameters




* Thank you!

- Code: https://github.com/adamculp/

Adam Culp
http://www.geekyboy.com
http://RunGeekRadio.com

Twitter @adamculp

Questions?



https://github.com/adamculp/
http://www.geekyboy.com/
http://RunGeekRadio.com/

	Intro
	Slide 2
	Slide 3
	Iteration
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Thank you

