
Prompt-Driven
Development:
Aligning Ideas, Tests, and Code

We have a
Trust problem

AI generated code is not great

On top of that, it is dangerous

Asking it to fix it is as reliable as the rest of it

Baruch Sadogursky - @jbaruch
× Developer Advocate at large (talk to me!)
× Development -> DevOps -> #DPE

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

Software design documents

Software design documents
× Write-once
× Read-maybe-once
× (Mis)understood by humans

So why don’t they work?
× Human (mis)understanding
× Vague responsibility boundaries

We have a
Trust problem
(not only with AI)

Next thing you know: It’s a vein diagram

Software I like Software I
know really well

But hey, we do have working software sometimes
× Good intentions
× Professionalism
× Tests and QA
× End result observation

Until gen AI changed the game
× Good intentions
× Professionalism
× Tests and QA
× End result observation

× Good intentions
× Professionalism
× Tests and QA
× End result observation

Idea!
What if we code in the intent and
always verify against it?

Let’s express intent in tests
× Instead of SDDs
× Always up-to-date
× Generate consensus
× Parsed by the machine

TDD?

What if it (almost) won’t look like code?
× Instead of SDDs
× Always up-to-date
× Generate consensus
× Parsed by the machine
× Describe behavior instead of tests

What if it (almost) won’t look like code?
× Always up-to-date
× Generate consensus
× Parsed by the machine
× Describe behavior instead of tests
× Almost plain English human language

BDD?

But writing tests first is still a good idea, right?!

Why developers won’t write tests first
× Developers are solution-biased
× We already know how to solve the

problem
× Legacy code bases

How everything comes together

Product managers
define what

software should do

LLM
creates

specs

Specs are
reviewed

and
agreed

upon

Tests are
generated

and
reviewed

Code is
written to
satisfy the

tests ->
specs ->
design

Why does it work?
× Product managers write text
× Specs are reviewed by all
× SDDs are Specs are living docs
× Everything else is derived from specs
× Previous steps are protected

PDD is BDD as it meant to be
× Define and agree on intent
× AI is protected from circular verification
× Up-to-date context docs at all times

Rules/Guidelines
× Mostly refined by Cascade
× The full version covers an existing

codebase scenario
× Has a link in /docs

New project

× Phase 1: Define requirements using the
memento pattern

× Phase 2: Define test scenarios and
specs

× Phase 3: Implement tests and business
logic

Existing project
× Phase 0: Examine code and produce

full test coverage
× Existing tests are protected

Protection rules
× Requirement documents are

protected after Phase 1.
× If changes are needed, the phase is reset

× Test scenarios and specs are
protected after Phase 2.

Recovery rules
× Source control commits after stages
× Requirements changes trigger phase

reset and re-alignment
× Might convert the project into ”existing” mode

Cascade in Windsurf
Pros
× Speed
× Conversation and

reflection
× Selectable models

Cons
× Not IntelliJ IDEA
× .windsurfrules system

is not ideal

Junie in intellij idea
Pros
× IntelliJ IDEA
× Execution Plan
× guidelines.md is

better

Cons
× Speed
× Introversion
× No chat/reflection

mode

Better Rules system?
× Multiple files for different scenarios
× Flexible actuators
× File references for reuse
× Optionally, part of the documentation
× .cursor/rules for the best

implementation ATM

Too much code?
× New prompt – new context window
× Memento pattern FTW
× But what if even the initial context is

too large?
× Is it the perfect argument for

microservices?

Who should fix the code?
× Code inspections (linting in VS Code)

integration
× “Switch from AI generation to tool

calling when needed”
× Leonid Kuligin – “What is an AI agent? How to develop one?”

Developer productivity

Is it engaging?

Looks like a pretty easy fix…

Are the stops intentional?

Use tools, add guardrails

Using IntelliJ IDEA code

inspections

Physically
protect

stage assets

Machine-
verify stages
compliance

Is it too rigid?
× The process feels the opposite of agile
× Making changes is a pain
× Are there other options?

Use tools, add guardrails

Using IntelliJ IDEA code

inspections

Physically
protect

stage assets

Machine-
verify stages
compliance

(Summary) PDD – BDD finally makes sense
× Generates consensus
× Features are verifiable back to

requirements
× We can start trusting AI code (🤞)
× But there is still work to be done

THANKS!
Q&A and Twitter X/Bsky/LinkedIn ads:

x @jbaruch
x #pdd
x speaking.jbaru.ch

