
Power Your API
Workflow With OpenAPI

Lorna Mitchell

Nexmo, the Vonage API Platform

We're using OpenAPI, and we love it! Today i'll introduce you to it and suggest why you may care

What is OpenAPI?
An API description standard, in YAML/JSON

• https://openapis.org
• Text-based works well with source control
• Formerly known as "Swagger"

@lornajane

https://openapis.org
Open standard, many contributors (big and small). Very inclusive

Detailed description of API, even the machine can understand it!

We LOVE OpenAPI!

It's the source of truth for our docs, we're starting to use it for testing/mocking and maybe SDKs one day

So why do you care? We think it really benefits you as well as our internal workflow, as well as indicating modern API practices. Here's why

Explore New APIs
Get started more quickly by using OpenAPI with your existing
tools:
• Import your OpenAPI spec into Postman

https://getpostman.com
• Also try this trick with: Paw, Insomnia, maybe your IDE?

@lornajane

https://getpostman.com
Actually really handy for APIs you thought you knew

Let's try it - Number Insights is a great lookup service, helps with fraud. ``videos/postman-ni.mp4``

Experiment with new features, get back up to speed with something you haven't used for a while

Great Resources
OpenAPI is a great basis for excellent documentation.

@lornajane

Evaluating new APIs - you need decent and accurate docs.

Research is so much easier with decent docs. And you can always render the docs yourself, some IDEs have support for this (VS Code?)

Also it's way more than docs but docs are a good place to start

Open Standard: Open Tools
https://developer.nexmo.com uses nexmo_oas_renderer
gem install nexmo-oas-renderer
export OAS_PATH=specs
nexmo-oas-renderer

The spec(s) can be found at https://localhost:4567
GitHub: https://github.com/Nexmo/nexmo-oas-renderer

Or try ReDoc https://github.com/Redocly/redoc
npm install -g redoc-cli
redoc-cli serve specs/openapi.yml

@lornajane

https://developer.nexmo.com
https://github.com/Nexmo/nexmo-oas-renderer
https://github.com/Redocly/redoc
DEMO1: ``cd ~/specs && nexmo-oas-renderer .`` - on port 4567

DEMO2: ``redoc-cli serve ~/specs/number-insight.yml`` - on port 8080

We use open source tools, and we particpate in other open source tool projects e.g. by offering our specs as test subjects.

We also publish our own tooling if we do create anything ourselves. Try our renderer, you're welcome!

It's an open standard with an excellent ecosystem

We test/fix other tools, share our specs, and even have an official proposal in the OpenAPI spec. Please ask me about webhooks after class!

Other excellent tools are available ... try ReDoc!

Single Source, Many Outputs
Content and presentation are separate, here's ReDoc rendering:

@lornajane

I will confess to using ReDoc locally, it has a ``--watch`` option and I figure if it works in both tools then it is a good start!

Easy Integrations
• First Choice: API provider's SDKs
• Nexmo publishes SDKs for 7 tech stacks

• Backup Plan: Generate a local code wrapper to access an API

@lornajane

The published SDKs should always be better, wrapping up things and providing helper functionality

Autocomplete, ready-made wrappers, really valuable and rapid for development

Generated Code Libraries
This example uses OpenAPI Generator
https://github.com/OpenAPITools/openapi-generator

docker run --rm -v ${PWD}:/local \
openapitools/openapi-generator-cli generate
-i number-insight.yml -g php -o /local/out/php

@lornajane

https://github.com/OpenAPITools/openapi-generator
Example uses Number Insights, our API for checking validity/reachability/etc of phone numbers, at different levels of detail

Generated Code Libraries
To use it:
 1 require_once('out/php/vendor/autoload.php');
 2 // copy code from README, set API key and secret
 3
 4 $apiInstance = new OpenAPI\Client\Api\DefaultApi(
 5 new GuzzleHttp\Client(), $config);
 6 $format = "json";
 7 $number = "447700900000";
 8 try {
 9 $result = $apiInstance->getNumberInsightBasic($format, $number);
10 print_r($result);
11 } catch (Exception $e) {
12 echo 'Exception when calling DefaultApi->getNumberInsightBasic';
13 }

@lornajane

The interesting stuff is on line 9

Just add some configuration and you're good to go

Inside an OpenAPI Spec
Warning: may contain YAML

A peek inside, helps to know what to expect even if you're consuming and don't really need to read them

Anatomy of OpenAPI Spec
Top-level elements:
• openapi

• info

• servers

• paths

• components

• security

• tags

@lornajane

``openapi`` The version of OpenAPI that this spec uses

``info`` Title and document version, many other fields

``servers`` An array of URLs to use

``paths`` The good part! URLs and verbs for your API features

``components`` Library of reusable items: parameters, schemas, responses, security schemes, examples, and more

``security`` Which security scheme component to use

``tags`` Free-form labels to group operations together

OpenAPI Spec Example
A JSON or YAML file holds the description (this is YAML)
openapi: 3.0.0
servers:
 - url: 'https://api.nexmo.com/ni'
info:
 title: Number Insight API
 version: 1.0.4
 description: Nexmo's Number Insight API delivers real-time intelligence ...
 contact:
 name: Nexmo DevRel
 email: devrel@nexmo.com
 license:
 url: 'https://opensource.org/licenses/MIT'

... a few hundred more lines here

@lornajane

JSON or YAML? I could argue for either. YAML is like the list you'd write in your text editor, JSON has more quotes and brackets

Wax lyrical about metadata, discoverable APIs, this done well will help all of us

OpenAPI Spec Example
Here's an endpoint, in paths
paths:
 '/basic/{format}':
 parameters:
 - $ref: '#/components/parameters/format'
 get:
 operationId: getNumberInsightBasic
 summary: Basic Number Insight
 description: |
 Provides [basic number insight](/number-insight/overview#basic-standard-and-advanced-apis)
 information about a number.
 parameters:
 - $ref: '#/components/parameters/number'
 - $ref: '#/components/parameters/country'

@lornajane

Basic idea: paths have URLs with parameters, and then verbs within that. Each URL/verb is an operation

This endpoint takes two parameters - but the details are in the components section

For example, that ``format`` parameter is in every endpoint....

OpenAPI Spec Example
We can $ref to elements that are reused, like this format
parameter that is in the path of every request for this API:
format:
 name: format
 in: path
 required: true
 description: 'The format of the response'
 example: json
 schema:
 type: string
 enum:
 - 'json'
 - 'xml'

@lornajane

OpenAPI Spec Example
Responses are organised by status code:
responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/niResponseJsonBasic'
 text/xml:
 schema:
 $ref: '#/components/schemas/niResponseXmlBasic'

@lornajane

Text-based Specifications
• Work brilliantly with source control
• We keep our API specs publicly: in GitHub

https://github.com/nexmo/api-specification
• Brought into https://developer.nexmo.com as a dependency
• Enables our other workflows - and yours!

@lornajane

https://github.com/nexmo/api-specification
https://developer.nexmo.com
Everything is better when it's in source control!

(Even my slides are markup and a style file rendered together)

Look out for a GitHub Actions talk - this is how we do our magic

changelog.nexmo.com

@lornajane

New innovation, for less-than-major-version changes.

Keeps you abreast of all changes, big or small

Powered by API Specs and GitHub Actions

Detects a spec with a version change - Then grabs the PR description and adds it to the tag - Builds the changelog page and feed from the tag information

I know I said you didn't care about our internal workflow but we're having fun!

OpenAPI Brings Power
to Your API Workflow

Your API workflow: explore, prototype, maintain

Our workflow: also awesome!

Provider or consumer, there are wins all around. I'm proud that Nexmo pursues this technical excellence in everything we do.

Resources
• Get in touch! @lornajane or @NexmoDev on Twitter
• https://developer.nexmo.com
• https://changelog.nexmo.com
• https://github.com/nexmo
• https://openapis.org

@lornajane

https://developer.nexmo.com
https://changelog.nexmo.com
https://github.com/nexmo
https://openapis.org

	What is OpenAPI?
	Explore New APIs
	Great Resources
	Open Standard: Open Tools
	Single Source, Many Outputs
	Easy Integrations
	Generated Code Libraries
	Generated Code Libraries
	Inside an OpenAPI Spec
	Anatomy of OpenAPI Spec
	OpenAPI Spec Example
	OpenAPI Spec Example
	OpenAPI Spec Example
	OpenAPI Spec Example
	Text-based Specifications
	changelog.nexmo.com
	OpenAPI Brings Power to Your API Workflow
	Resources

