
My first year with event-sourcing
And a little bit about tracking your beer

Tim Huijzers



Tim Huijzers
Dragem or Webbaard

Developer @ drukwerkdeal.nl
Founder of DeventerPHP 

Usergroup





First Try
● Limited knowledge

● No experience

● No ES framework

● Doomed from the start



Second Try
● Limited knowledge 

● Limited experience

● New Framework

● New DI manager

● New ES Framework

● Doomed To Fail



Third Try
● Some knowledge

● Some experience

● Known framework

● known database

● known ES framework

● Still doomed







BeerWarehouse



Why use Event Sourcing



CRUD



We will save a new entry in our system because we just 
bought it and will store it in the fridge for later.



If we change the location the system only knows about that 
location.



We drank it so it’s not in the system anymore



We want to keep a history of everything we drank.



I want to know when I drank this in my history.



But that’s only for new beers.





Events



Same Information as before + Explicit action about what 
happened



Make Small Events



Removed Location and changed name because in the real 
world you might not know this yet.



When returning home I put the beer in my fridge



I need room in my fridge so I take it out. Using the same 
Event



And at last a event about when I consumed it.





Crud
● I know what beer I have.

● I know when it was consumed.

● I know where it is.

Event-Sourcing
● I know what beer I have.

● I know when it was consumed.

● I know where it is.

● I know where it was before.

● I know when it was moved.

● I know where it was at any point in 

time

● I know how many times it was moved.

● I know when it was added to the 

system.

● I know what else was moved in that 

day.



“Every software program relates to some 
activity or interest of its user.” 

Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart 
of Software





When To Use Event Sourcing



● You need an audit log

● You like scalability

● You want to separate the read and write of an application

● You want to replay event on a dev machine to get an accurate 

situation of what the state was at a point in time.

● You want reporting but don’t know what yet.

● You are done with mapping objects to tables



When NOT To Use Event Sourcing



● You only need a simple CRUD system.

● You are processing a lot of personal data.

● You just want to query a lot of things on the DB

● You are starting on a big project for production



Event Sourcing in code



Prooph



http://getprooph.org/





Command











Command Handler







Aggregate





Event











Back to the Aggregate











Think About Side Effects









What about Symfony?







Structuring your application





Understanding the DB





How many beers do I have?



How many different styles do I have?



How many beers have I drank last 30 days?



Projection



A Projection allows you to loop through all event (past and present) and build your 

own views.

● Read Model

○ Define the data you would like to use.

● Projection

○ Loops through the events and applies that data to your view

● Finder

○ Helps you find data from that view.











Pitfalls



Refactoring is harder, think about your 
architecture





Versioning
● Change an Event but support the old version

● Make a new Event

● Make the Event right from the start



Something wrong with the event



Event are immutable, So don’t change them
● Try solving it another way first.

● Correct errors with new events

● Try a upcaster

● Make a new stream and fill it with mutated events (and test)

● Change the events in the database



But what if I have like 100 trillion gazillion 
events?





Snapshots



You Do Not Need Snapshots From The start



Trigger on Event Count



Pure Event Sourcing Is Not A Holy Grail



Do Not Save Personal Data In Events



Make Projections For All You Lists



Try It In A Hackathon First



Most Of The Time Your DB Is Not Holy



What Now?



http://getprooph.org/





Source
https://github.com/prooph/proophessor-do-symfony

http://getprooph.org/

https://github.com/prooph/proophessor-do-symfony
http://getprooph.org/


Other Tools
● Broadway

○ No Upcaster, 

○ No Snapshots, 

○ No Replaying

● Axon

○ Upcasting by MessageFactory, 

○ Snapshots by Trigger on event count, 

○ Replaying by Example code for replay

● Akka

○ Upcasting by Event Adapter, 

○ Snapshots decided by actor, 

○ Replaying





Thanks, Any Questions?

Example code from talk on: 
https://github.com/webbaard/BeerWarehouse

Slides of this talk on cfp.owncloud.com: 
https://cfp.owncloud.com/occon18/talk/XFB9PF/

https://github.com/webbaard/BeerWarehouse
https://cfp.owncloud.com/occon18/talk/XFB9PF/



