
Horacio González 2025-09-05

Building Smarter MCP Servers
Generic vs. Domain-Specific Approaches

LLM evolution
From simple chat to tool-enhanced agent!

What's the weather like
in Madrid today?

Today it is sunny in
Madrid, but very cold,
take a coat.

Weather API

getWeather("Madrid (ES)")

{"weather":"sunny",
 "temperature":"1.8ºC"}

LLM are only language models

What's the weather like in Madrid today?

I'm unable to provide real-time
information or current weather updates.

They have no built-in way to use
external tools or real-time data

Tools and plugins were added

What's the weather like
in Madrid today?

Today it is sunny in
Madrid, but very cold,
take a coat.

Weather API

getWeather("Madrid (ES)")

{"weather":"sunny",
 "temperature":"1.8ºC"}

LLM recognizes it needs an external function and calls it,
integrating the result into a natural-language response.

Today it is sunny in Madrid, but very
cold, take a coat.

Call getWeather("Madrid")

Result of the tool calling: 
{"weather":"sunny","temperature":"1.8ºC"}

What's the weather like in Madrid today?
If needed, you have an available weather
tool: getWeather(city)

What's the weather like in Madrid today?

LLM don't call directly those tools

getWeather("Madrid")

{"weather":"sunny","temperature":"1.8ºC"}

Today it is sunny in Madrid, but very cold,
 take a coat.

How are those LLM Tools defined?

Here in Java using LangChain4j

//DEPS dev.langchain4j:langchain4j:1.0.0-beta1

import dev.langchain4j.agent.tool.Tool;

public class LyingWeatherTool{

 @Tool("A tool to get the current weather in a city")

 public static String getWeather(String city) {

 return "The weather in " + city + " is sunny and hot.";

 }

}

LyingWeatherTool.java

Why this matters?

● Moves LLMs from static text generation
○ dynamic system components

● Increases accuracy & real-world usability
● Allows developers to control what the LLM can access

What's the weather like
in Madrid today?

Today it is sunny in Madrid, but
very cold, take a coat.

From LLM chats to LLM-powered agents

LLMs act like an agent that can plan actions:
search the web, run some code, then answer

Can you summarize this
YouTube video?

Of course,the video is a
talk of Horacio about MCP…

*This is a "fake" view, remember LLMs dont call tools directly
But it's the view from the Point of View of the user

The rapid evolution of agents

Before MCP
(2023–November 2024)

● Agents == niche
LangChain, bespoke APIs,
Copilot experiments…

● No standard way to connect
LLMs to tools.

MCP Introduced
(Nov 2024)

● Anthropic launches Model
Context Protocol.

● Vendor-neutral, open
standard for connecting
LLMs.

The explosion
(2025)

● Agents go mainstream:
runtimes, orchestration,
enterprise adoption.

● MCP reframed as the
interoperability layer for
agents.

Model Context Protocol (MCP):
The missing link

MCP bridges LLMs with your applications,
enabling controlled, real-world interactions

Why Do We Need MCP?

LLM function calling is useful,
but it lacks structure

Why Do We Need MCP?

Problem
● LLMs don’t automatically know

what functions exist.
● No standard way to expose an

application's capabilities.
● Hard to control security and

execution flow.
● Expensive and fragile

integration spaghetti

Model Context Protocol

Anthropic, November 2024:
LLMs intelligence isn't the bottleneck,

connectivity is

Model Context Protocol

De facto standard for exposing
system capabilities to LLMs

https://modelcontextprotocol.io/

https://modelcontextprotocol.io/

The MCP Landscape Today

Major players adopted MCP:
● Anthropic – Originator and tool

provider (Claude Desktop, SDKs).
● OpenAI – Agent SDK, ChatGPT

Desktop, Responses API.
● Google DeepMind – Gemini support

and tooling.
● Microsoft / GitHub – Copilot Studio,

Azure, Office integration, C# SDK.
● Developer Platforms – Replit,

JetBrains, Sourcegraph, TheiaIDE.
● Enterprise / Services – Block, Stripe,

Cloudflare, Baidu Maps.
● Thousands of MCP servers live.

How MCP works

● Applications define an MCP manifest (structured JSON).
● The manifest describes available functions, input/output formats,

and security policies.
● LLMs can discover and request function execution safely.

Weather
MCP Server

MCP is provider-agnostic

Works with any LLM provider

Ensures standardized function exposure
across platforms

MCP solves integration spaghetti

The architecture of MCP
Clients, servers, protocol and transports

Tools, resources and prompts

MCP Servers: APIs in natural language

A new kind of API

MCP Clients: on the AI assistant or app side

One MCP client per MCP Server

MCP Protocol & Transports

MCP Protocol
Follow the JSON-RPC 2.0
specification

MCP Transports
● STDIO (standard I/O)

○ Client and server in the same
instance

● HTTP with SSE transport
(deprecated)

● Streamable HTTP
○ Servers SHOULD implement

proper authentication for all
connections

Full MCP architecture

Services: tools, resources & prompts

● Tools
○ Standardized way to expose functions that can be invoked by clients

● Resources
○ Standardized way to expose resources to clients
○ Each resource is uniquely identified by a URI

● Prompts
○ Standardized way to expose prompt templates to clients
○ Structured messages and instructions for interacting with LLMs

MCPs are APIs
And they should be architectured in a similar way

Developer Expectations Have Shifted

Winter 2024−2025

● “What is MCP?”
● “How do I connect my DB?”

Summer 2025

● “How do I build smarter MCP servers?”
● “How do I secure them?”
● “How do they fit into agent workflows?”

Let's use an example: RAGmonsters

https://github.com/LostInBrittany/RAGmonsters

https://github.com/LostInBrittany/RAGmonsters

RAGmonsters PostgreSQL Database

We want to allow LLM request it

Two options:
● A generic PostgreSQL MCP

server
● A custom-made MCP server

tailored for RAGmonsters
Which one to choose?

Generic PostgreSQL MCP server
Using PostgreSQL MCP Server

● A Resource that give the table schema for tables:
/schema

● A Tool that allows to do SQL queries: query

LLM can know what tables do we have and
what is their structure, and it can request them

Implementation:
https://github.com/CleverCloud/mcp-pg-example
PostgreSQL MCP Server:
https://github.com/modelcontextprotocol/servers/tree/main/src/postgres

https://github.com/CleverCloud/mcp-pg-example
https://github.com/modelcontextprotocol/servers/tree/main/src/postgres

Custom-made RAGmonsters MCP server
Coding a MCP server for it. It offers targeted
tools:
● getMonsterByName: fetches detailed

information about a monster.
● listMonstersByType: Lists monsters of a

given type.

● Easy, intuitive interactions for LLMs.
● Optimized for specific use cases.
● Secure (no raw SQL).

Implementation:
https://github.com/LostInBrittany/RAGmonsters-mcp-pg

https://github.com/LostInBrittany/RAGmonsters-mcp-pg

How to choose?

But how to do it?
Some down-to-Earth, practical advices

Design principles
What “good” looks like

● Narrow, named capabilities
each tool should read like a product verb: getMonsterByName,
listMonstersByType, compareMonsters.

● Stable types in/out
explicit schemas (IDs, enums, unions) so the agent can plan reliably.

● Deterministic behavior
same inputs → same outputs; include idempotencyKey when making state
changes.

● Least privilege
tools do one thing; internal queries/side-effects are not exposed.

● Guardrails at the edge
validate inputs, clamp result sizes, redact PII, enforce authZ inside the server.

Capability modeling
Turn “tasks” into MCP tools/resources/prompts

Tools (actions)
● Read: getMonsterByName(name) -> Monster
● List: listMonstersByType(type, limit=25, cursor?) -> {items:[Monster],

nextCursor}

● Search: searchMonsters(q, limit=10) -> [MonsterSummary]

Resources (documents/URIs the client can browse/fetch)
● ragmonsters://schema/Monster (JSON schema for types)
● ragmonsters://docs/query-tips (compact usage notes)
● ragmonsters://images/{monsterId} (read-only asset stream)

Prompts (reusable instructions/templates)
● prompt://ragmonsters/answering-style (tone, do/don’t)
● prompt://ragmonsters/disambiguation (ask for missing fields first)

Input contracts
Make the LLM succeed on the first try

● Refer enums & unions for fields the model tends to invent
type ∈ {BEAST, ELEMENTAL, UNDEAD,…}

● Add optional “reason”/“intent” fields that your server ignores functionally but logs
for eval

● Hard limits at the boundary: limit ≤ 50, name.length ≤ 64, q.length ≤ 120
{

 "type": "object",

 "required": ["type"],

 "properties": {

 "type": {"enum": ["BEAST","ELEMENTAL","UNDEAD","CELESTIAL","HUMANOID"]},

 "limit": {"type":"integer","minimum":1,"maximum":50},

 "cursor": {"type":"string"}

 }

}

Output shape
Make it composable

Always return a machine part and a human part:
● data: typed payload the client/agent can chain.
● summary: 1–2 lines the model can quote.
● next: cursors or suggested follow-ups.

{

 "data": { "items": [{ "id":"glowfang", "type":"BEAST", "danger":3 }],

"nextCursor":"abc123" },

 "summary": "Found 1 beast: Glowfang (danger 3)." ,

 "next": ["getMonsterByName('glowfang')"]

}

Security & governance
Baked into the server

● AuthN: accept a caller token; map to user/roles inside your server.

● AuthZ: per-tool role checks (viewer, editor, admin).
● Data scope: inject row-level filters (tenant, project) before hitting

storage.
● Rate limits: e.g., 60 rpm per user; lower for heavy tools.
● Redaction: never return secrets; hash IDs in logs.
● Explainability: include source/policy notes in responses where relevant.

Observability & evaluation
From the beginning

● Structured logs
{tool, userId, durationMs, ok, errorCode}

● Traces
around datastore calls; record row counts

● Golden tasks
keep a small suite (10–20) of representative prompts; run nightly

● Safety tests:
prompt-injection set, over-broad queries, boundary limits

Conclusion

● Generic MCP servers
Quick to set up, flexible, but less efficient and more error-prone.

● Domain-specific MCP servers
Safer and faster for targeted tasks, but need more upfront design.

Choose wisely
Use generic for exploration, domain-specific for production.

A bit like for REST APIs, isn't it?

The road ahead

● MCP is quickly becoming the lingua franca of agents.

● We’re still early — best practices are being shaped right
now.

● Your design choices today will set the tone for secure,
scalable agent ecosystems tomorrow.

Thank you all!

That's all, folks!

