BEN BUCHANAN

MASTODON.SOCIAL/@2000K

REACT IN PYTHON

YOU ARE PROBABLY WONDERING

WHY?

OMG HE IS CONFLATING LANGUAGES AND FRAMEWORKS, GET THE TORCHES AND PITCHFORKS

WHY NOT? I'VE DONE Ul WORK WITH LOTS OF STUFF...

4

)

4

4

Perl (it was The Year 20007)
PHP (multiple)

Lotus Notes (the actual worst)
TCL (vignette)

Java with JSP

Java with Soy

Classic ASP/VBScript

)

)

)

)

NET

Python (Dash)

Vanilla JS

jQuery

Backbone (mercifully briefly)
Pug (fk.a.Jade)

Angular

» React
» No JS (skkkrRRRR crowd EN e

» Plus countless
proprietary systems
with custom templating
solutions accepting raw
HTML and CSS, and

sometimes JS

» Plus more | forgot

MEH, CAN'T BE WORSE THAN PERL

me, circa December 2019

IF YOU ONLY LEARN ONE BACKEND LANGUAGE, MAZWELL LEARN THE MOST POPULAR ONE

TURNS OUT PYTHON IS NICE & moee Q=

Dec 2023 Dec 2022 Programming Language Ratings Change

@ Python 13.86% -2.80%

» Easy to learn

® c 11.44%
» Extremely popular & c- 1001%

7.99%

» Massive ecosystem
C# 7.30%

JavaScript 2.90%
PHP 2.01%
Visual Basic 1.82%

SQL 1.61%

Assembly 1.11%
language

tiobe.com/tiobe-index

http://tiobe.com/tiobe-index

1. Draw some circles 2. Draw the rest of the fucking owil

200
0K

.

tI{e 2000k weblog

Python for JavaScript developers

In the last year I've been working regularly with Python, porting a Ul library to Dash
and supporting people making apps with it.

It's the first time I've used Python for work; and having forgotten what little Python I'd
ever known, I've basically been learning from scratch.

I've found Python-the-language pretty approachable, and the web is full of tutorials
for it. Python-the-ecosystem hasn't been as approachable though, and there seems
to be less written about the practical plumbing of Python projects.

When | asked around, everyone from experienced Python devs to other recent
learners said they'd found the same thing — lots of language intros, not much on the
tooling. So | decided to write the blog post | was looking for at the start.

To be clear this is not presented as expert Python advice. It's a survival guide from a
Python novice, intended for even-more-recent Python arrivals. I'm sure some of it's
not optimal (ie. wrong), but overall hopefully it's good enough to be useful. Also this
doesn’t get into the language much, although | do give some links if you need them.

https://weblog.200ok.com.au/2021/10/python-for-javascript-developers.html

OK THAT'S PYTHON

WHAI'S DASH?

BEWARE OF IMITATIONS

Plotly (Dash creators)

YES, PLOTLY LIKE THE CHARTS

DASH.PLOTLY.COM

» Dash is a Python web framework by Plotly
» You write Python; you get a Flask app with a React Ul and a Python backend

» You can use components built in both Python and React

ALL FRAMEWORKS SHOULD BE THIS EASY TO GET STARTED

DASH SETUP IS AKSHULY EASY oy X

® app.py
1| dash Dash, html
),
» Dash In 20 Minutes really does take 20 minutes 3 app - Dash(__name)
A
. , 5 app.layout = html.Div(|
» It's baS"Ca”y--- 6 html.H1("In the words of Monty Burns”),
7 html.P("Hello, cruel world!")
. . 8 1)
plp 1nstall dash 9
touch app.py 10 __hame__ __main__
.. 11 app.run(debug=True)
(minimal code - see screenshot)
python app.py]
open http://127.0.0.1:8050/ .l _ IR
= & > ¢ O D 127.00.1:8050 T © & =

In the words of Monty Burns

Hello. cruel world!

http://127.0.0.1:8050/

aapp.callback(
Output(component 1id-"output-element’', component property-'children’),
[Input(component 1id-"1nput-element’, component property-'value')]

)
def dostuff(str):

f"{format(str)}"

app.layout = html.Div(]
html.H1("Parrot”),

dcc.Input(id-"1input-element”, valuve="", type="text"),
html.Div(id="output-element”

Parrot

Pal'l'Ot input-element top-down v

‘ Pleces Of elght Pieces of eight

|
ES

Pieces of eight

Pieces of e1ght

outputllem ent

0000

IT'S ACTUALLY PRETTY USEFUL TO HAVE THE BACKEND AVAILABLE RIGHT THERE

ALSU P' IHON from dash import Dash, html, dcc, callback, Output, Input
p

import plotly.express as px

import pandas as pd

) PIUS Whatever y0u Want to dO in Python df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/

app = Dash(__name__)

» Which is, after all, why we were here in
app.layout = html.Div([

the firSt place! 'Pa'ﬁ'd'a's PythOn. html.Hl(children='Title of Dash App', style={'textAlign':'center'}),

dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),

dcc.Graph(id='graph-content')

1)
@callback(
Output('graph-content', 'figure'),
Input('dropdown-selection', 'value')
)

def update_graph(value):
dff = df[df.country==value]
return px.line(dff, x='year', y='pop')

if __name__ == '__main__":

app.run(debug=True)

PLOTLY DID HAVE A REASON FOR CREATING DASH

ALSO, DATAVIZ

75 continent @ Asia @ Europe @ Africa @ Americas @ Oceania

70

» Dash was basically built
around Plotly, so it's good
for dataviz. =

65

55

lifeExp

50

45

40

35

gdpPercap

1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

EVERYONE'S A WINNER BABY

EVERYONE GETS SOMETHING OUT OF IT

» Analysts build apps with minimal training
» Designers built a prototype in a brief workshop
» A sysadmin friend picked it up in a day

» Great way for frontenders to learn Python

BUT | WANNA USE REACT

REACT — DASH

REDUCE, REUSE, RECYCLE 1 import { React, Component } from "react”;
2 import { PropTypes } from "prop-types"”;
3 import { Card } from "@ns/your-1lib";
b
PURTING YOUR REACT TO DASH 5 export default class card extends Component {
6 render() {
7 const {
8 children,
» Create a React wrapper to.. 9 setProps,
10 ...other_props
11 ¢ = this.props;
1. Import your component 19 return (PEOP
13 <Card
14 data-theme={data_theme}
2. Handle some Dash props . {_. other props}
16 >{children}</Card>
3. Define PropTypes (required in Dash) - } %
19 }
» Update manifest to locate the wrapper 20
21 card.defaultProps = {};
22
» Package as PyPi 23 card.propTypes - {
24 variant: PropTypes.oneOf([
. . . . 25 "default”,
» Ready to import into Dash application 26 "primary”,
27 “secondary”
28 1)

29 };

RELAX EVERYONE, ITS OUTPUT IS JUST AS UGLY AS REACT

REACT

OV oOoONOOUL S~ WS

26

27
28
29
30
31

import React from 'react’;

import classNames from ‘classnames’;

import { Module } from '../module’;

import '@quantium-enterprise/qbit-core/dist/components/card.css’;
export var CardvVariant;

(function (CardVariant) {

CardVariant["Default"] = "default";
CardVariant["Insight"] = "insight";
CardVariant["Primary"] = "primary";

CardVariant["Secondary"] = "secondary";
})(Cardvariant || (Cardvariant = {}));
export var CardSentiment;
(function (CardSentiment) {
CardSentiment["Bad"] = "bad";
CardSentiment["Good"] = "good";
CardSentiment["Neutral"] = "neutral"”;
CardSentiment["Warning"] = "warning";
})(CardSentiment || (CardSentiment = {}));
export var CardSpacing;
(function (CardSpacing) {
CardSpacing["Medium"] = "medium";
CardSpacingl"Large"] = "large";
})(CardSpacing || (CardSpacing = {}));
export function Card({ className, header, children, footer, sentiment,
spacing = CardSpacing.lLarge, variant, ...props }) {
const classes = classNames('q-card', sentiment & g-card-sentiment-
${sentiment} , spacing 66 q-card-spacing-${spacing} , variant &&
‘g-card-${variant} , className);
return (React.createElement(Module, { className: classes, header:
header, content: children, footer: footer, ...props }));
}
/* EXPORTS FOR THE EXPORT GOD, DEFAULTS FOR THE DEFAULT THRONE
*/

export default Card;
//# sourceMappingURL=index.js.map

DASH

28
29
30
31
32
33
34
S5
36
37
38
39
40

41

42
43

bt
45
46
47
48
49
50
51

sentiment (a value equal to: "bad", "good", "neutral", "warning"; optional)
spacing (a value equal to: "medium", "large"; optional)
style (dict; optional)

variant (a value equal to: "default", "insight", "primary", "secondary"; optional)"""
_children_props - ['header', 'footer']
_base_nodes = ['header', 'footer', 'children']
_namespace - 'gbit_dash’
_type = 'card'
a_explicitize_args
def __init__(self, children=None, sentiment=Component.UNDEFINED, variant=Component.
UNDEFINED, spacing=Component.UNDEFINED, header=Component.UNDEFINED, footer=Component.
UNDEFINED, id=Component.UNDEFINED, className=Component.UNDEFINED, data_gtheme=Component.
UNDEFINED, ref=Component.UNDEFINED, role=Component.UNDEFINED, style=Component.UNDEFINED,
**kwargs):
self._prop_names - ['children', 'id', 'className', 'data_qtheme', 'footer’,
'header', 'ref', 'role', 'sentiment', 'spacing', 'style', 'variant']
self._valid_wildcard_attributes - []
self.available_properties - ['children', 'id', 'className', 'data_qgtheme', 'footer',
'header', 'ref', 'role', 'sentiment', 'spacing', 'style', 'variant']
self.available_wildcard_properties - []
_explicit_args - kwargs.pop('_explicit_args')
_locals = locals()
_locals.update(kwargs) # For wildcard attrs and excess named props
args - {k: _locals[k] for k in _explicit_args it k != 'children'}

super(card, self).__init__(children-children, **args)

YES IN HINDSIGHT | ABSOLUTELY COULD HAVE PICKED A MORE EXCITING EXAMPLE

NOW YOU CAN USE YOUR REACT IN DASH

» Dash props map to your React props
» Events map through as well

» You might miss JSX syntax, but people who
have never used JSX don't

16

your_package ns
dash html
app app

contents [

ns.

1),

ns.

1),

card(|
html.P("Some content set with arg")

card(children=|
html.P("Some content set with kwarg")

Some content set with arg

BECAUSE WE NEEDED MORE LAYERS HERE

AUTOMATION

» We automated the conversion from Typescript
to PropTypes, using ts-morph to walk the AST

» We also extract lists of components and props
into JSON to generate tests and docs

N

10
11
12
13
14
15
16
17

html.Div(/[
ns.card(
variant-variant.lower(),
children=|

html.P(f"{variant} Content")

]
)

1)

for variant 1n card variants

WHAI DID WE LEARN?

THE INCREDIBLY SUBTLE SUBTEXT OF THIS TALK

IF YOU HAVE NOT LEARNED A LANGUAGE
OTHER THAN JAVASCRIPT, YOU SHOULD.

IT DOES NOT HAVE TO BE PYTHON IF YOU'RE SCARED OF WHITESPACE

NICE REASONS TO LEARN ANOTHER LANGUAGE

» Realise that you can do it

| have known far too many frontenders who didn't believe they could.

» Learn another ecosystem
» Experience another community
» Collaborate with new people

» Add a big new tool to the toolkit

WHY NOT, | PROBABLY WASN'T ON THE "NICE" LIST ANYWAY

SPICY REASONS TO LEARN ANOTHER LANGUAGE

» Ha! Ha! I'm Full Stack now!
» Improved bullshit detector

» You might change how you work

TO BE REALLY CLEAR

| AM NOT SAYING “STOP USING JS".

JUST TRY SOMETHING ELSE AS WELL!

BUT GOING BACK TO THE MAIN POINT

FOR DASH SPECIFICALLY "

» It's a really interesting way to extend the Dash Python User Guide
rea Ch Of yo ur Rea Ct, i ntO Pyt h on Dash is the original low-code framework for rapidly building data apps in Python.

» There are also R and Julia versions Quickstart
b3 © ®

} G ive it a t ry ! Installation A Minimal Dash App Dash in 20 Minutes Tutorial

Dash Fundamentals

00 o0
Layout I LT Interactive Graphing and

Crossfiltering

THANKS!

MASTODON.SOCIAL/@2000K
THAT'S TWO HUNDRED OK, LIKE THE HTTP STATUS

THAT WAS: REACT IN PYTHON

