Rome | March 22 - 23, 2019

## {copemotion}

## Rediscover the known Universe with NASA datasets Horacio Gonzalez @LostInBrittany



 $\odot$ 

## **Horacio Gonzalez**

## @LostInBrittany

Spaniard lost in Brittany, developer, dreamer and all-around geek

# Team DevRel











Web Technologies GDE

#### {codemotion}



## HelloExoWorld



## Looking for exoplanets in NASA datasets







## HelloExoWorld

## Once upon a time...









## An amateur astronomer



Pierre Zemb, DevOps OVH







## What not to do if you love astronomy



#### Live in Brest







## **Looking for solutions**



Mixing passions







## **Google is your friend...**



time series astro

time series astronomy time series analysis in astronomy limits and potentialities astroml.time series astronomical time series analysis random time series in astronomy astrophysical time series Google Search I'm Feeling Lucky

Report inappropriate predictions

#### Let's find a project







## **Exoplanets?**



Planets orbiting stars far away







## How do we find them?



The transit method seems the best







## The transit method



Credits: NASA's Goddard Space Flight Center







## How do we look for transits?



Image credits : NASA







## Watching the sky



By Carter Roberts [Public domain], via Wikimedia Commons







# And what kind of data we get?



Pleiades By NASA, ESA, AURA/Caltech, Palomar Observatory. Via Wikimedia Common



#### {copemotion}



# Well, that's the problem





Seven stars, seven different profiles



#### {copemotion}



# Kinda big data





Following

 $\sim$ 

The full **@NASAKepler** dataset (Kepler + K2) is ~25 TB in size. For comparison, the entire archive of the **@librarycongress** is 15 TB.

7:54 PM - 3 Mar 2017



### Over 40 million light curves







# **Big AND open data**



What describes you best?



Lots of datasets in #opendata



#### {copemotion}



## And we can help with that!



Let's use our tools to analyse the data







# **Time Series**

## **To analyse Kepler datasets**









# **Kepler: spatial Time Series**

## Definition of Time Series: A series of data points indexed in time order









## **Time Series**

- Stock Market Analysis
- Economic Forecasting
- Budgetary Analysis
- Process and Quality Control
- Workload Projections
- Census Analysis











# **Time Series**

## Applications:

- Understanding the data
- Fit a model
  - Monitoring
  - $\circ$  Forecasting











# Stock market Analytics **Economic Forecasting** \$\$\$ Study & Research







## **Time Series**

Many specific analytical tools:

- Moving average
- ARMA (AutoRegressive Moving Average)
- Multivariate ARMA models
- ARCH (AutoRegressive Conditional Heteroscedasticity)
- Dynamic time warping





## **Time Series**

Specific application of general tools

- Artificial neural networks
- Hidden Markov model
- Fourier & Wavelets transforms
- Entropy encoding





## **Dealing with Time Series**



The 3 'v'







# A match made in heaven

## Warp 10, OVH Observability and HelloExoWorld











{copemotion}



## **Monitoring OVH with Time Series**





{codemotion}



# **OVH Observability Data Platform**

Some of OVH Observability metrics:

- 1.5M datapoints/s, 24/7
- Peaks at ~10M datapoints/s
- 500M unique series





## **Tools to deal with Time Series**



### Many options



{conemotion}



## **Metrics Data Platform**





{conemotion}



## **Metrics Data Platform**





{codemotion}



# Why Warp 10?

Warp 10 is a software platform that

- Ingests and stores time series
- Manipulates and analyzes time series











## Analytics is the key to success



#### Fetching data is only the tip of the iceberg







## Manipulating Time Series with Warp 10

A true Time Series analysis toolbox

- Hundreds of functions
- Manipulation frameworks
- Analysis workflow







- Downloaded and parsed 40 millions of FITS files
- Pushed it to OVH Metrics
- Select a cool subset as training set
- Verified we could find the same planets as NASA




# **Choosing a star: Kepler 11**



Image credit: NASA/Tim Pyle



### {copemotion}





# Looking at the raw signal...



SAP\_FLUX:

The flux in units of electrons per second contained in the optimal aperture pixels collected by the spacecraft.



### {copemotion}



# Looking at the raw signal...



#### SAP\_FLUX: The flux in units of electrons per second contained in the optimal aperture pixels collected by the spacecraft.



### {copemotion}



## Looking at one record



Perturbations in dirty signals



#### {conemotion}



# **Transits are tiny**



~40 electrons per second



{copemotion}



## First step: downsampling





### {copemotion}



# First step: downsampling



You can see the transit candidates... but how can we teach the computer to see them?



{copemotion}



# If you 💙 signal processing





{conemotion}



## **Poor person's high pass filter**



Using the trend



### {conemotion}



Signal - Trend





{conemotion}



## **After some tuning**



We have our transit candidates



### {copemotion}



# What's next?

## Where do we go from here?





{conemotion}





# **Only the beginning**





### {conemotion}





## A growing team















EXOPLANET ASTRONOMERS AT NIGHT

## Join us! https://helloexo.world

https://xkcd.com/1371/



{copemotion}



# Thank you!





{conemotion}



# Want to know more?

## **Analysing with WarpScript**





{codemotion}





# WarpScript

#### **Reverse Polish Notation**

| Input | 2 | 3 | add | 11 | mul | 1  | add |
|-------|---|---|-----|----|-----|----|-----|
| Stack |   | 3 |     | 11 |     | 1  |     |
|       | 2 | 2 | 5   | 5  | 55  | 55 | 56  |





{conemotion}





## Variables

'hello, world!'
'exo' STORE
\$exo

// Push Hello World String on the Stack// Store it in a variable called exo// Then push back exo variable on the stack



{copemotion}





## What are the available series?



// Application authentication
// selector for classname
// Selector for labels



#### {conemotion}





## **Get raw data**

\$readToken
'sap.flux'
{ 'KEPLERID' '6541920' }
'2009-05-02T00:56:10.000000Z'
'2013-05-11T12:02:06.000000Z'

FETCH

ſ

- // Application authentication
- // selector for classname
- // Selector for labels
- // Start date
- // End date



### {copemotion}





## **Kepler-11: Raw data**





{conemotion}



## **Time manipulation**





{conemotion}





## **Time related functions**



## **V**OVH

#### {copemotion}



## How to split a Time series

\$gts 6 h 100 'record' TIMESPLIT // Singleton (or list of) GTS
// Minimum of time without data-points
// Minimum of data-points required
// New labels to subdivide the result



#### {conemotion}





## Filtering

\$gts П { 'record' '5' } filter.bylabels FILTER

// Singleton (or list of) GTS // Equivalence classes // Labels to select **// Type of filter** 



1

### {copemotion}





## **Reference record: 5**





{conemotion}



## Downsampling





### {codemotion}

























last, max, mean, and, count ...

































## **Actual**





{conemotion}



## Trend





{conemotion}
























add, gt, rate, and, count...



#### {conemotion}































### **Actual**





{conemotion}



### Trend





{conemotion}



### **Actual - trend**





{conemotion}



### **Actual - trend**





{copemotion}



### **Time to level-up!**





{conemotion}



## **Time series operation**

### \$gts0 ... \$gtsN ['record'] op.add APPLY

[

1

// First series pull // ... // N series pull // Key labels list // Type of operator



#### {copemotion}

























sub, gt, mask, and, mul ...



#### {conemotion}



# **Final result**





{conemotion}

