
© 2020 Ververica

Marta Paes (@morsapaes)

Developer Advocate

Change Data Capture

With Flink SQL and Debezium

@morsapaes2

About Ververica

Original Creators of
 Apache Flink®

Enterprise Stream Processing
With Ververica Platform

Part of
Alibaba Group

Try out Ververica Platform Community Edition (free forever!): https://www.ververica.com/platform

https://www.ververica.com/platform

@morsapaes3

What’s Wrong?

@morsapaes4

📊

The data in your DB is not dead...

OLTP Database(s)

ETL

💣
👀

Data Warehouse (DWH)

@morsapaes5

📊

The data in your DB is not dead...

OLTP Database(s)

ETL

💣
👀

Data Warehouse (DWH)

• Most source data is continuously produced

In the end:

• Most logic is not changing that frequently

@morsapaes6

📊

The data in your DB is not dead...

OLTP Database(s)

ETL

💣
👀

Data Warehouse (DWH)

• Why are we not distributing the workload?

• Why are we letting the data go “stale”?

A source of events?

...but your integrations might be killing its value (and also some DBAs).

• Most source data is continuously produced

In the end:

• Most logic is not changing that frequently

• Why are we looking at yesterday’s data?

@morsapaes7

Can’t wait to scan a production database for changes using a 100-line

query with 1000 business logic conditions.

— No one

@morsapaes8

📊

Change Data Capture (CDC)

OLTP Database(s)

ETL

💣
👀

Data Warehouse (DWH)

More on CDC use cases: https://speakerdeck.com/gunnarmorling/

Tracking and propagating data changes in a database to

downstream consumers.

https://speakerdeck.com/gunnarmorling/streaming-database-changes-with-debezium

@morsapaes9

Change Data Capture (CDC)

OLTP Database(s)

ETL

Data Warehouse (DWH)

Tracking and propagating data changes in a database to

downstream consumers.

More on CDC use cases: https://speakerdeck.com/gunnarmorling/

Can we do better?

https://speakerdeck.com/gunnarmorling/streaming-database-changes-with-debezium

@morsapaes10

Not all CDC is created equal

Query-based CDC

❌ Some data changes might get lost

❌ Trade-off: frequency vs. load on source DBs

❌ DELETE operations are not captured

❌ Can’t propagate schema changes

@morsapaes11

What if we tapped into the transaction log?

Query-based CDC

Not all CDC is created equal

@morsapaes12

Log-based CDC

Learn more: https://debezium.io/blog/2018/07/19/advantages-of-log-based-change-data-capture/

Query-based CDC

✅ All data changes are captured

✅ Low propagation delay (i.e. near real-time)

✅ More context on the actual changes

✅ Minimal impact on the source DBs

Not all CDC is created equal

https://debezium.io/blog/2018/07/19/advantages-of-log-based-change-data-capture/

@morsapaes13

Debezium

Learn more: https://debezium.io/

MySQL Debezium
Connector

Postgres Debezium
Connector

Kafka Connect Kafka

Debezium is an open source distributed platform for log-based CDC.

● Canonical format for change events → Different sources, same output

● Support for most common data sources (MySQL, Postgres, MongoDB, ...)

https://debezium.io/blog/2018/07/19/advantages-of-log-based-change-data-capture/

@morsapaes14

Now that you have your (timely) change data events, how can you process them?

MySQL Debezium
Connector

Postgres Debezium
Connector

Kafka Connect Kafka

Change Data Captured. Now what?

@morsapaes15

Now that you have your (timely) change data events, how can you process them?

Change Data Captured. Now what?

MySQL Debezium
Connector

Postgres Debezium
Connector

Kafka Connect Kafka

Flink

@morsapaes16

What is Apache Flink?

Learn more: flink.apache.org

Flink is an open source framework and distributed engine for stateful stream processing.

Flink Runtime
Stateful Computations over Data Streams

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes17

What is Apache Flink?

Learn more: flink.apache.org

Flink is an open source framework and distributed engine for stateful stream processing.

Flink Runtime
Stateful Computations over Data Streams

Flexible
APIs

Fault
Tolerance

High
Performance

Stateful
Processing

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes18

What is Apache Flink?

Learn more: flink.apache.org

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

This gives you a robust foundation for a wide range of use cases:

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes19

The Flink API Stack

19

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Ease of Use

Expressiveness

Flink has layered APIs with different tradeoffs for expressiveness and ease of use. You can mix and match all the APIs!

Streaming Analytics & ML

Stateful Stream
Processing

@morsapaes20

The Flink API Stack

20

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Ease of Use

Expressiveness

For some use cases, you need Flink’s full workhorse power.
● Explicit control over core primitives (events, state, time)

● Complex computations and customization

● Maximize performance and reliability

@morsapaes21

The Flink API Stack

21

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Ease of Use

Expressiveness

But for a lot of others, you don’t.
● Focus on logic, not implementation

● Mixed workloads (batch and streaming)

● Maximize developer speed and autonomy

@morsapaes22

The Flink API Stack

22

Building Blocks (events, state, (event) time)

DataStream API (streams, windows)

Table API (dynamic tables)

Flink SQL

PyFlink

Ease of Use

Expressiveness

But for a lot of others, you don’t.
● Focus on logic, not implementation

● Mixed workloads (batch and streaming)

● Maximize developer speed and autonomy

@morsapaes23

Flink SQL

SELECT user_id, COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

This is standard SQL (ANSI SQL)

“Everyone knows SQL, right?”

@morsapaes24

Flink SQL

SELECT user_id, COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

This is standard SQL (ANSI SQL)

also Flink SQL

“Everyone knows SQL, right?”

@morsapaes25

A Streaming SQL Engine

user cTime url
user cnt

SELECT user_id,

 COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

Bob 1

Liz 1

Mary 1Mary 2

Ingest all changes as
they happen

Continuously update the
result

@morsapaes26

Flink SQL in a Nutshell

● SQL syntax and semantics (i.e. not a “SQL-flavor”)

● Unified APIs for batch and streaming

● Support for advanced operations (e.g. temporal joins, pattern matching/CEP)

Metastore
Postgres
(JDBC)

Schema Registry

FLIP-125

Apache Zeppelin

Data Catalogs

UDF Support

PythonJava

Scala

NotebooksNative ConnectorsExecution

TPC-DS Coverage

BatchStreaming

For an overview of supported operations, check the Flink documentation: Table API&SQL / SQL / Queries

Apache Kafka

Elasticsearch

FileSystems

JDBC HBase

Kinesis

+

https://cwiki.apache.org/confluence/display/FLINK/FLIP-125%3A+Confluent+Schema+Registry+Catalog
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sql/queries.html#operations

@morsapaes27

Flink SQL + CDC

• Available from Flink 1.11 * (released Jul. 2020)

* We recommend using Flink 1.11.2 for full-blown CDC support.

• Initial implementation:

– JSON-encoded changelogs;

– Kafka as a changelog source.

CREATE TABLE clicks (

...

) WITH (

'connector'='kafka',

'format'='debezium-json',

'debezium-json.schema-include'='false'

);

Postgres Debezium
Connector

SELECT user_id, COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;
...

@morsapaes28

(Un)Demo

@morsapaes29

What are we doing?

A Cassowary aka the world’s

most dangerous bird.

● Get Debezium up and running with Kafka

● Register a Postgres catalog to access external table metadata

● Create a changelog source to consume Debezium CDC data from Kafka

● See CDC in action!

● Maintain a Materialized View (MV) in Elasticsearch

● Visualize the results in Kibana

Processing (fake) insurance claim data related to animal attacks in Australia.

Try out the demo: https://github.com/morsapaes/flink-sql-CDC

https://github.com/morsapaes/flink-sql-CDC

@morsapaes30

The Demo Environment

Postgres Debezium
Connector

Assign & monitor Query
tasks

SQL Client

Submit Query

JobManager

TaskManager
Exec. Query
Tasks

Kafka

Kafka Connect

Postgres

Coordinate

Elasticsearch + Kibana

Try out the demo: https://github.com/morsapaes/flink-sql-CDC

https://github.com/morsapaes/flink-sql-CDC

@morsapaes31

DEMO

Tables:

● claims.members

● claims.accident_claims (1000 records)

1. Start the Postgres client to check the source tables and run some DML statements later:

SELECT * FROM information_schema.tables WHERE table_schema='claims';

@morsapaes32

DEMO

2. Register the Debezium Postgres connector in Kafka Connect.

curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json"

http://localhost:8083/connectors/ -d @register-postgres.json

@morsapaes33

DEMO

2. Register the Debezium Postgres connector in Kafka Connect.

{

 "name": "claims-connector",

 "config": {

 "connector.class": "io.debezium.connector.postgresql.PostgresConnector",

 "tasks.max": "1",

 "database.hostname": "postgres",

 "database.port": "5432",

 "database.user": "postgres",

 "database.password": "postgres",

 "database.dbname" : "postgres",

 "database.server.name": "pg_claims",

 "table.whitelist": "claims.accident_claims",

 "value.converter": "org.apache.kafka.connect.json.JsonConverter",

 "value.converter.schemas.enable": false,

 "decimal.handling.mode": "double",

 "tombstones.on.delete":false

 }

}

Connector configuration

register-postgres.json

@morsapaes34

DEMO

3. Check that the snapshot events have been pushed to the pg_claims.claims.accident_claims Kafka topic.

@morsapaes35

DEMO

3. Check that the snapshot events have been pushed to the pg_claims.claims.accident_claims Kafka topic.

Debezium change events (JSON):

● Event key

● Event value: before, after, op, ts_ms

value

key

This checks out!

@morsapaes36

DEMO

4. Is Debezium working?

@morsapaes37

DEMO

5. Start the Flink SQL Client and register a Postgres catalog to access the metadata of existing tables over JDBC.

CREATE CATALOG postgres WITH (

 'type'='jdbc',

 'property-version'='1',

 'base-url'='jdbc:postgresql://postgres:5432/',

 'default-database'='postgres',

 'username'='postgres',

 'password'='postgres'

);

SQL Client

Catalog DDL

@morsapaes38

DEMO

6. Create a changelog table to consume the change events from the pg_claims.claims.accident_claims topic.

CREATE TABLE accident_claims

WITH (

 'connector' = 'kafka',

 'topic' = 'pg_claims.claims.accident_claims',

 'properties.bootstrap.servers' = 'kafka:9092',

 'properties.group.id' = 'test-consumer-group',

 'format' = 'debezium-json',

 'scan.startup.mode' = 'earliest-offset'

)

LIKE `claims.accident_claims` (

EXCLUDING OPTIONS);

Source Table DDL

Derive schema from the original table (Postgres)

Define the source connector (Kafka)

@morsapaes39

DEMO

7. Is Debezium+Flink working?

@morsapaes40

DEMO

8. Continuously write results to Elasticsearch and visualize the changes using Kibana.

CREATE TABLE agg_insurance_costs (

 es_key STRING PRIMARY KEY NOT ENFORCED,

 insurance_company STRING,

 accident_detail STRING,

 accident_agg_cost DOUBLE

) WITH (

 'connector' = 'elasticsearch-7',

 'hosts' = 'http://elasticsearch:9200',

 'index' = 'agg_insurance_costs'

);

Sink Table DDL

INSERT INTO agg_insurance_costs

SELECT UPPER(SUBSTRING(m.insurance_company,0,4) || '_' ||

SUBSTRING (ac.accident_detail,0,4)) es_key,

 m.insurance_company,

 ac.accident_detail,

 SUM(ac.claim_total) member_total

FROM accident_claims ac

JOIN members m

ON ac.member_id = m.id

WHERE ac.claim_status <> 'DENIED'

GROUP BY m.insurance_company, ac.accident_detail;

Continuous SQL Query

@morsapaes41

DEMO

8. Continuously write results to Elasticsearch and visualize the changes using Kibana.

@morsapaes42

(Un)Demo

@morsapaes43

To wrap it up...

● Flink SQL is used at massive scale in companies like Alibaba, Uber, Yelp and Lyft.

Check out these open-sourced Flink CDC connectors:

https://github.com/ververica/flink-cdc-connectors

• Umbrella ticket (FLINK-18822):

– Avro-encoded changelogs;

– Temporal joins with changelog sources;

– Batch support.

Infrastructure

>5K
nodes

Data Size

985PB

Throughput (Peak)

2.5B
events/sec

Latency

Sub-sec

State Size (Biggest)

100TB>500K
CPU coresSingle’s Day 2019

● Flink SQL is standard, provides unified APIs and has a growing ecosystem of integrations around it.

Upcoming CDC Improvements

https://github.com/ververica/flink-cdc-connectors
https://issues.apache.org/jira/browse/FLINK-18822

@morsapaes44

Want to learn more about Flink?

© 2020 Ververica

Follow me on Twitter: @morsapaes

Learn more about Flink: https://flink.apache.org/

Thank you, ApacheCon!

https://flink.apache.org/

