
Dockerfile Dos & Do nOts

Melissa McKay
Developer Advocate

JFrog

There are many 
ways to 

skin a cat…

but SHOULD you???



About Melissa McKay...
Developer Advocate @JFrog

Java Champion
Docker Captain

TWITTER:
@melissajmckay

LINKEDIN:
linkedin.com/in/melissajmckay



Buzz

BEE



The Dockerfile

FROM
ADD
COPY
RUN
USER
CMD

https://docs.docker.com/engine/reference/builder/

ENV
ARG
WORKDIR
LABEL
EXPOSE
VOLUME

STOPSIGNAL
ONBUILD
SHELL
HEALTHCHECK
ENTRYPOINT



8 DO NOTS



1)
IGNORING
.dockerignore



WHY USE .DOCKERIGNORE?
Avoid wasted time and 
invalidating cache by sending 
EVERYTHING to the Docker daemon

Avoid sending test or user 
specific files

Avoid sending secrets!

FROM ubuntu

WORKDIR /myapp

COPY . /myapp

EXPOSE 8080

ENTRYPOINT [“start.sh”]



DO
# Ignore these files in my project

**/*.md

!README.md

passwords.txt

.git

logs/

*/temp

**/test/

DO NOT

File: .dockerignore 

404

File: .dockerignore 



2) 
USING
UNTRUSTED
BASE IMAGES



WHY USE TRUSTED BASE 
IMAGES?
Evaluate the image for your use 
case - KNOW WHAT’S IN IT!

Avoid malicious packages

Get latest updates

FROM evilimage

WORKDIR /myapp

COPY . /myapp

ENTRYPOINT [“start.sh”]

Start with Docker Official 
Images - mitigate your risk



3) 
NEVER
UPDATING



WHY UPDATE?
Security updates are important!

FROM baseimage:2-years-ago

WORKDIR /myapp

COPY . /myapp

ENTRYPOINT [“start.sh”] Security updates are really 
important!

Security updates are really, 
REALLY important!



4) 
NOT DEFINING 
VERSIONS



WHY DEFINE VERSIONS?
Have a bill of materials for 
your build - know what version 
of EVERYTHING is installed

Save yourself troubleshooting 
time by explicitly controlling 
version updates

FROM mybaseimage

RUN apt-get update \
   && install -y \

mypackage
anotherpackage
yetanotherpackage 

WORKDIR /myapp

COPY . /myapp

EXPOSE 8080

ENTRYPOINT [“/start.sh”]



5) 
INCLUDING 
BUILD
TOOLS



WHY NOT INCLUDE YOUR BUILD 
TOOL?

The size of your image will be 
bigger than it needs to be

Minimize your attack surface 
area by ONLY including what you 
need for your application to 
run in production

FROM maven:3.6.3-jdk-8

WORKDIR /myapp

COPY . /myapp
 
RUN mvn clean package

ENTRYPOINT [“start.sh”]

You can use a multi-stage 
build instead!



6)
USING
EXTERNAL
RESOURCES



WHY NOT USE EXTERNAL 
RESOURCES?

If an external resource goes 
away… what do you do???

Not reviewing external scripts 
before they are used in your 
production environment is an 
excellent opening for a supply 
chain attack.

FROM ubuntu

RUN apt-get update \ 
&& install -y curl

RUN curl -sL \
https://somewhere.com/script.sh \
 | bash -

WORKDIR /myapp

COPY . /myapp

ENTRYPOINT [“start.sh”]



7)
Hardcoding
Secrets
OR config



WHY AVOID HARDCODED 
SECRETS OR CONFIG?
It’s never a good idea to 
advertise sensitive information 
in artifacts that will be moved 
around, possibly replicated, 
and deployed into production 
(or anywhere else)

Providing configuration at 
runtime allows for images to be 
environment agnostic

FROM mybaseimage

RUN apt-get update

RUN rm -rf secrets

WORKDIR /myapp

COPY . /myapp

EXPOSE 8080
ENTRYPOINT [“/start.sh”]



8)
Doing
Too MUCH!



WHY KEEP IT SIMPLE?
Dockerfile should describe the 
build

If the base image needs 
modified - modify it!

Dockerfiles should contain 
idempotent operations only - in 
order to provide repeatable 
builds

FROM mybaseimage:1.0.0

RUN sudo apt-get purge \
--auto-remove oldpackage

RUN apt-get update \
&& apt-get install -y \
newpackage

WORKDIR /myapp

COPY . /myapp

RUN /cleanupdatabase.sh

RUN /run_unit_tests.sh
 
ENTRYPOINT [“start.sh”]



RESOURCES
DOCKERFILE DOCUMENTATION
https://docs.docker.com/engine/reference/builder/

OFFICIAL IMAGES
https://docs.docker.com/docker-hub/official_images/

MULTI-STAGE BUILDS
https://docs.docker.com/develop/develop-images/multistage-build/

STORING YOUR IMAGES
https://dzone.com/refcardz/getting-started-with-container-registries



THANK YOU!
Q & A


