
@LostInBrittany#codeurs2017 #NoWebcomponentForThat

But there is no web
component for that!

Horacio Gonzalez
@LostInBrittany

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Horacio Gonzalez
@LostInBrittany

Cityzen Data
http://cityzendata.com

Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Who am I ?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

There is no webcomponent for that!

So there is no web
component
for your nifty feature…

But there is a JS library

What can I do?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Not having a component
for a feature

isn't a show stopper.

Writing it is way simpler
than you could think

The show must go on!

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Introduction
Context is everything

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

I was kinda an AngularJS fanboy

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Until I hit a wall

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Enter Web Components & Polymer

WebComponents, a modular approach to
webapps

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Don't do it, crazy Spaniard, it isn't production ready!

Are you sure you want to do it?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

And it worked!

We put our first Polymer app in production on 2014 with Polymer 0.4
Full story: http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

It was there I met the problem...

I used D3.js, NVD3 and
canvas for my dataviz

But there was nothing
like that in Polymer

What could I do?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

For each problem there is a solution

I saw several solutions:
● Wait for the web

component
● Dirty integrating the

library
● Componentalize it

Guess which one I chose...

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

It was only the first time...

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

How do I componentalize them?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Componentalizing a library
Let's begin with a simple example

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

granite-qrcode-generator

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

What QR Code library to use?

I choose QR.js
https://github.com/lifthrasiir/qr.js/

● Small
○ 26 kb uncompressed and commented

● Quick!
● Well coded

○ Structured, lots of comments, clean code

● No dirty DOM manipulation

https://github.com/lifthrasiir/qr.js/

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component
encapsulating it

5. Profit?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Usual case: Non-modularized, adding global vars

How to be sure that the lib is
● loaded once
● and only once
● before the element needs it

Loading the library in the element file

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Loading the library in the element file

First answer: simply use script tag

<script src="../d3/d3.min.js" charset="utf-8"></script>

<script src="../nvd3/build/nv.d3.js"></script>

<!-- include stylesheet for shady dom and shadow dom -->

<link rel="stylesheet" href="../nvd3/build/nv.d3.min.css" />

<link rel="import" type="css" href="../nvd3/build/nv.d3.min.css" />

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Loading the library in the element file

2nd answer: Testing and lazy loading
in the element ready lifecycle method…

 FOR EVERY ELEMENT
 USING A DEP

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Adding the library as a dependency

3rd answer: componentalize the loading!
https://github.com/LostInBrittany/granite-js-dependencies-grabber
<link rel="import" href="./granite-c3-css.html">

 <granite-js-dependencies-grabber

 id="granite-js-dependencies-grabber-demo"

 dependencies="[[_dependencies]]"

 on-dependency-is-ready="_onDependencyReady"

 debug="[[debug]]"></granite-js-dependencies-grabber>

_dependencies: { type: Array,

 value: [{name: 'd3', url: '../d3/d3.min.js'},{name: 'c3', url: '../c3/c3.min.js'}] }

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to

initialize

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Define the inputs (attributes)

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Define the outputs (events)

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Define the UI (template)

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Wire the attributes and events to the library

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Wire the attributes and events to the library

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Wire the attributes and events to the library

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

granite-qrcode-generator

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

granite-qrcode-scanner

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

What QR Code scan library to use?

I choose jsqrcode
https://github.com/LazarSoft/jsqrcode

● Small for a full QR Code scanner
○ 110 kb uncompressed and commented

● Quick and efficient
● Well coded

○ Structured, lots of comments, clean code

● But with some dirty DOM manipulation

https://github.com/LazarSoft/jsqrcode

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component
encapsulating it

5. Profit?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to

initialize

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Define the inputs and outputs

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Define the UI (template)

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Initializing in the lifecycle methods

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Initializing in the lifecycle methods

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

But what about the wiring?

Almost no wiring needed

● Either done in the
template

● Or in the initialization

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

And then, does it work?

Weeeeell, not really…

And it doesn't give a clear
error

What does it happen here ?

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Digging in the problem

Going deep inside the library
Adding logs and breakpoints
And I found the guilty line:

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Patching the library

Doing it the open source way...

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

granite-qrcode-scanner

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Other examples: ace-widget

@LostInBrittany#codeurs2017 #NoWebcomponentForThat

Thanks!

I hope you liked this talk!

Don't hesitate to send me your questions
by email, twitter, hangout, carrier pigeon...

