
#DevoxxFR

But there is no web
component for that!

Horacio Gonzalez @LostInBrittany

1

#DevoxxFR

Horacio Gonzalez

@LostInBrittany

Spaniard lost in Brittany,
developer, dreamer and
all-around geek

#DevoxxFR

There is no webcomponent for that!

So there is no web component
for your nifty feature…

But there is a JS library

What can I do?

#DevoxxFR

Not having a component
for a feature

isn't a show stopper.

Writing it is way simpler
than you could think

The show must go on!

#DevoxxFR

Introduction

Because context is everything

#DevoxxFR

I was kinda an AngularJS fanboy

#DevoxxFR

Until I hit a wall

#DevoxxFR

Enter Web Components & Polymer

WebComponents, a modular approach to webapps

#DevoxxFR

Don't do it, crazy Spaniard, it isn't production ready!

Are you sure you want to do it?

#DevoxxFR

And it worked!

We put our first Polymer app in production on 2014 with Polymer 0.4
Full story: http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

#DevoxxFR

It was there I met the problem...

I used D3.js, NVD3 and canvas for
my dataviz

But there was nothing
like that in Polymer

What could I do?

#DevoxxFR

For each problem there is a solution

I saw several solutions:

 Wait for the web component

 Dirty integrating the library

 Componentalize it

Guess which one I chose...

#DevoxxFR

It was only the first time...

#DevoxxFR

How do I componentalize them?

#DevoxxFR

Componentalizing a library

Let's begin with
a simple example

#DevoxxFR

granite-qrcode-generator

#DevoxxFR

What QR Code library to use?

I choose QR.js
https://github.com/lifthrasiir/qr.js/

● Small
○ 26 kb uncompressed and commented

● Quick!
● Well coded

○ Structured, lots of comments, clean code

● No dirty DOM manipulation

https://github.com/lifthrasiir/qr.js/

#DevoxxFR

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component encapsulating it

5. Profit?

#DevoxxFR

Usual case: Non-modularized, adding global vars

How to be sure that the lib is:

● loaded once
● and only once
● before the element needs it

Loading the library in the element file

#DevoxxFR

Loading the library in the element file

First answer: simply use script tag

<script src="../d3/d3.min.js" charset="utf-8"></script>

<script src="../nvd3/build/nv.d3.js"></script>

<!-- include stylesheet for shady dom and shadow dom -->

<link rel="stylesheet" href="../nvd3/build/nv.d3.min.css" />

<link rel="import" type="css" href="../nvd3/build/nv.d3.min.css" />

#DevoxxFR

Loading the library in the element file

2nd answer: Testing and lazy loading
in the element ready lifecycle method…

 FOR EVERY ELEMENT
USING A DEP

#DevoxxFR

Adding the library as a dependency

3rd answer: componentalize the loading!
https://github.com/LostInBrittany/granite-js-dependencies-grabber

<link rel="import" href="./granite-c3-css.html">

 <granite-js-dependencies-grabber

 id="granite-js-dependencies-grabber-demo"

 dependencies="[[_dependencies]]"

 on-dependency-is-ready="_onDependencyReady"

 debug="[[debug]]"></granite-js-dependencies-grabber>

_dependencies: { type: Array,

 value: [{name: 'd3', url: '../d3/d3.min.js'},{name: 'c3', url: '../c3/c3.min.js'}] }

#DevoxxFR

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to initialize

#DevoxxFR

Define the inputs (attributes)

#DevoxxFR

Define the outputs (events)

#DevoxxFR

Define the UI (template)

#DevoxxFR

Wire the attributes and events to the library

#DevoxxFR

Wire the attributes and events to the library

#DevoxxFR

Wire the attributes and events to the library

#DevoxxFR

granite-qrcode-generator

#DevoxxFR

Let's try something
more difficult...

Componentalizing a library
that manipulates DOM

#DevoxxFR

granite-qrcode-scanner

#DevoxxFR

What QR Code scan library to use?

I choose jsqrcode
https://github.com/LazarSoft/jsqrcode

● Small for a full QR Code scanner
○ 110 kb uncompressed and commented

● Quick and efficient
● Well coded

○ Structured, lots of comments, clean code

● But with some dirty DOM manipulation

https://github.com/LazarSoft/jsqrcode

#DevoxxFR

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component encapsulating it

5. Profit?

#DevoxxFR

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to initialize

#DevoxxFR

Define the inputs and outputs

#DevoxxFR

Define the UI (template)

#DevoxxFR

Initializing in the lifecycle methods

#DevoxxFR

Initializing in the lifecycle methods

#DevoxxFR

But what about the wiring?

Almost no wiring needed

 Either done in the template
 Or in the initialization

#DevoxxFR

And then, does it work?

Weeeeell, not really…

And it doesn't give a clear error

What does it happen here ?

#DevoxxFR

Digging in the problem

Going deep inside the library
Adding logs and breakpoints
And I found the guilty line:

#DevoxxFR

Patching the library

Doing it the open source way...

#DevoxxFR

granite-qrcode-scanner

#DevoxxFR

Other examples: ace-widget

#DevoxxFR

Thanks!
I hope you liked this talk!

Don't hesitate to send me your questions
by email, twitter, hangout, carrier pigeon...

