

OPEN UNCOMPLICATED SIMULTANEOUS SCALING FOR USER AND APPLICATION GROWTH

Erik Riedel, PhD Senior VP, Engineering | ITRenew

@RiedelAtWork

Hyperscale for All: Powering the Circular Data Center

ITRenew delivers maximum financial & sustainability returns from open technology

amazon

ebay

facebook

Google

PayPal

Uber

WEBINAR REGISTRATION

SIMULTANEOUS SCALING FOR USER AND APPLICATION GROWTH

Accelerating the Journey to Cloud-Native with Kubernetes and Open Hardware on Tues, June 9 at 9:00 AM PT with Erik Riedel.

Is the clock suddenly ticking on your cloud-native and elastic infrastructure initiatives?

Changing market demands and priorities during this global crisis mean businesses can no longer afford to take a multi-year journey to cloud-native. Yet going cloud-native right now means that, overnight, your IT teams must scale capacity up from thousands to millions of users, and scale infrastructure out to support hundreds rather than dozens of apps and workloads. No pressure.

We all agree the need to serve more customers, add services and grow business revenues has never been more urgent. But accelerating cloud-native and elastic infrastructure can be complex and challenging. Increasingly, Product Managers and IT Managers are turning to open software to get more apps up and running quickly and to open hardware to rapidly and efficiently support user and application growth.

Join Erik Riedel, SVP of ITRenew Compute and Storage, on Tuesday, June 9 at 9:00 AM PT as he shares his insights on these trends and addresses why industry leaders worldwide are taking this approach to the multi-dimensional scaling dilemma. Drawing from implementation of ITRenew's Sesame for Open Systems in data centers across the globe, Erik will:

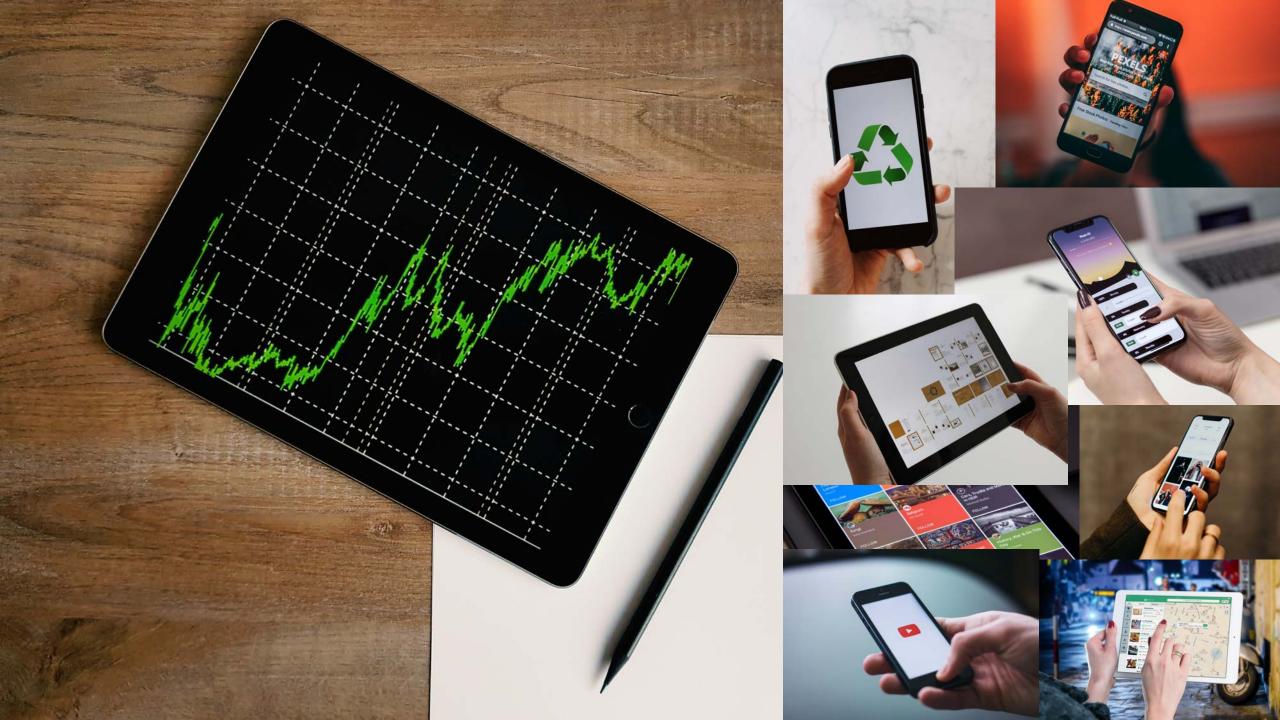
- · Show how open hardware platforms deliver on the promise of elastic infrastructure orchestration.
- Explain how open technology takes care of which apps run on which nodes, making them perfect for frameworks like Kubernetes.
- Demonstrate how anyone can implement at scale, in record time, with a case study on how to go
 from server to serverless in 20 minutes or less.

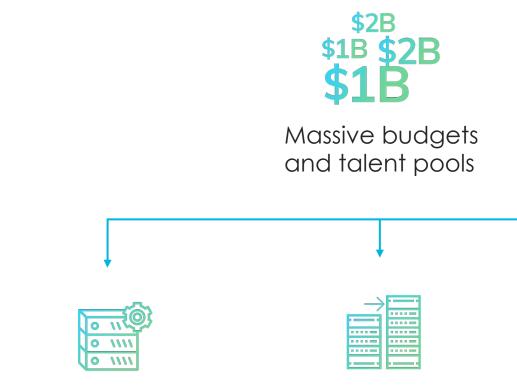
Don't let the combined pressure of multi-dimensional workload scaling slow you down when Open Technology can accelerate your cloud-native initiatives today.

We have the proof that **Open for All** is not just a utopian vision, it is real and ready today: preconfigured, plug-in-ready rack-scale solutions, built on open architecture.

No assembly. No guesswork. No army of engineers required.

Now anyone can power their data center like a hyperscaler while dropping their TCO and upping their sustainability game.





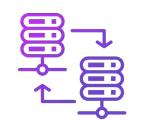
open hardware

open software

The big cloud providers have all the advantages

Most advanced technology

Greatest flexibility to scale


Lowest costs

If everyone had the advantages, they could...

Deliver more new services

Respond faster to customer needs

Increase margins & accelerate growth

Open Is Necessary, But Not Sufficient Per Se

The Benefits of Open Hardware

MORE FLEXIBILITY

Multi-vendor, standards-based hardware for modular solutions to fit your needs

More server, storage, and network capacity, in less space saves costs

OPTIMIZED POWER

Rack-level power vs. individual server power. More efficient. Less cost. Fewer points of failure

OPTIMIZED COOLING

Rack-level cooling to operate more efficiently. Even more with free-air cooling, if the data centers support it

STREAMLINED MAINTENANCE

Flexible, easy-access design enables faster troubleshooting, updates, and upgrades

The Benefits of Open Software

MORE FLEXIBILITY

Multi-vendor, standards-based software for modular solutions to fit your needs

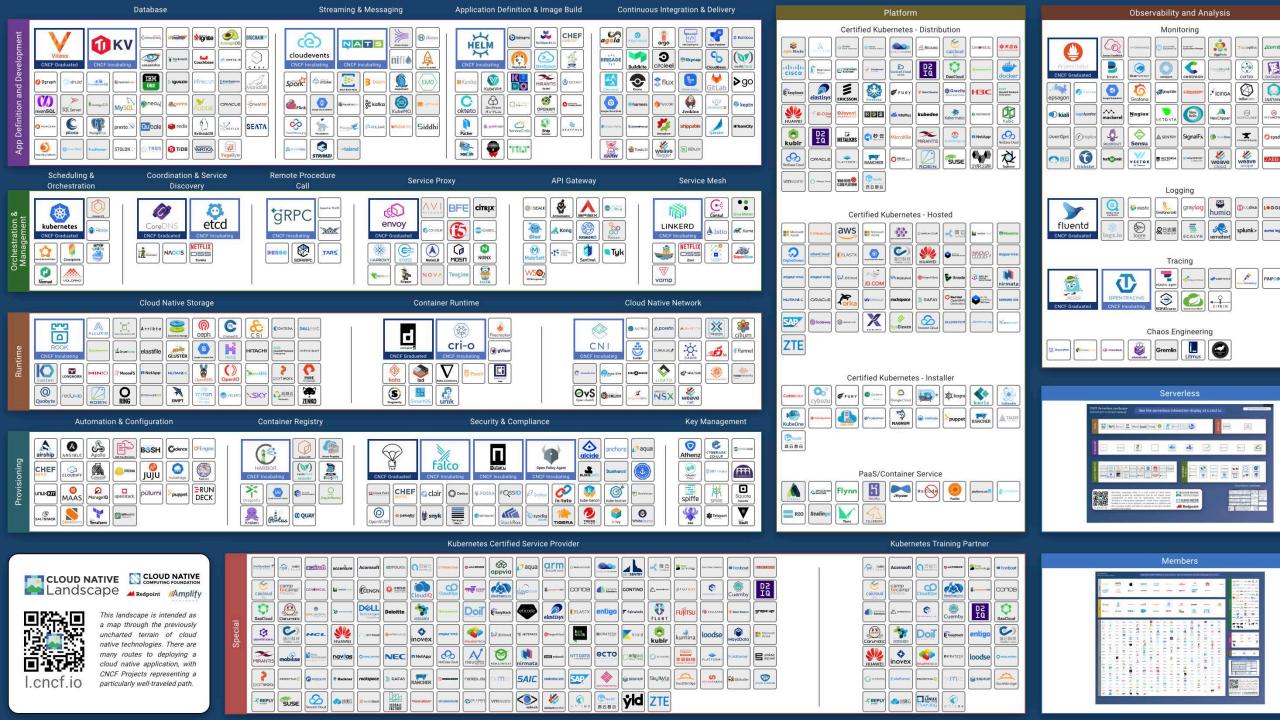
HIGH DENSITY COMPUTING

More automation, with API-driven scalability, allows more software per silicon in²

OPTIMIZED POWER

Stack-level power vs. individual packaged software. More efficient. Less cost. Fewer points of failure

OPTIMIZED VALIDATION


Stack-level continuous integration, continuous deployment (CI/CD) to validate more efficiently. Fewer points of failure in the field

STREAMLINED MAINTENANCE

Flexible, API-based, devops-considered design enables faster troubleshooting, updates, and upgrades

THE POWER OF HYPERSCALE FOR ALL

Optimized for your workload, from deskside to data center. No assembly. No guesswork. Just plug them in.

SESAME BY ITRENEW

PROVEN HYPERSCALE TECH BUILT ON OPEN ARCHITECUTURE CONSISTENT PRODUCT DEPENDABLE SUPPLY BUSINESS-CHANGING TCO

Optimized For Workloads. Ready To Deploy

NO GUESSWORK. NO ASSEMBLY. JUST PLUG THEM IN.

SESAME FOR OPEN SYSTEMS

Massive scale, cross-rack switching interconnects up to 20 racks; 750+ nodes in a single cluster, network domain

Pre-validated with Kubernetes software and infrastructure stacks

Linux-ready with scalable hardware management

SESAME FOR AI/ML

High bandwidth, low latency platform to optimize learning

Powerful application processing on large and small accelerated compute nodes

100G and bandwidthoptimized connectivity for top throughput

SESAME FOR CONVERGED

Simplicity of design with standardized converged nodes

Compute, storage and network capability scalable in lockstep as needed

Fully open configuration and manageability tools, qualified and optimized for Linux

Sesame for Open Systems

- Massive scale; cross-rack switching interconnects up to 20 racks;
 900+ nodes in a single cluster, network domain
- Pre-validated with Kubernetes software and infrastructure stacks
- Linux-ready with scalable node-level management

CAPACITY

- 6 to 36 nodes per rack mix of node types
 - single-socket x86 compute
 - 2-socket x86 compute
 - storage nodes w/ NVMe flash
- 3, 6, or 9 infrastructure nodes/rack

PERFORMANCE

- BASE config: 150+ cpu cores & >1 TB memory
- SCALE config: 700+ cpu cores & >8 TB memory
- 5 TB to 250 TB of high IOPS flash storage/ rack
- 2.5 kW to 18.9 kW per rack
- Full 25 GbE connectivity within the rack

WORKLOAD FLEXIBILITY

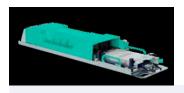
- Pre-designed/integrated racks fit most common Kubernetes/VM orchestration deployment architectures
- Servers, storage, and networking hardware is pre-qualified and pre-tested
- Designed to fit the space & power constraints of most modern data centers

external TOR switches (2x)								
ingress	ingress	ingress						
internal TOR switches (2x)								
compute	compute	compute						
compute	compute	compute						
compute	compute	compute						
compute	compute	compute						
compute	compute	compute						
compute compute compute								
power zone BB								

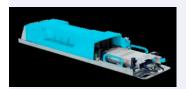
compute	compute	compute
compute	compute	compute
compute	compute	compute
storage	storage	storage
storage	storage	storage
storage	storage	storage
mgmt	mgmt	mgmt
infra	infra	infra

power zone AA

Servers the second compute compute compute compute infra power supply + switch up to 5 nodes



external TOR switches (2x)								
ingress	ingress ingress							
interna	al TOR switch	ies (2x)						
compute	compute	compute						
compute	compute	compute						
compute	compute compute							
compute	compute							
compute	compute	compute						
compute	compute	compute						
power zone BB								


•							
compute	compute	compute					
compute	compute	compute					
compute	compute	compute					
storage	storage	storage					
storage	storage	storage					
storage	storage	storage					
mgmt	mgmt	mgmt					
infra	infra	infra					
power zone AA							

up to 45 nodes

single or 2- socket nodes, 25 GbE connectivity

flash-based storage nodes; millions of IOPS and terabytes of capacity

Case Study – Project Goals and Genesis

OCP adoption could be accelerated by offering **pre-designed** and **pre-qualified** solutions for key computing use cases. Many service provider & enterprise SaaS companies are looking for **solutions** to roll onto the floor, plug in, and quickly run workloads.

We are working with **infrastructure software** stacks and **software partners** to pre-design and pre-qualify solutions with OCP equipment.

Case Study – From Servers to Serverless in 10 23 Minutes

Provisioning Server	Linux	DevOps	Automation		
Our Choices	Ubuntu 19.04	docker, Ansible	Rancher		
Deployed Services	DRP (PXE server) DHCP (static IPs)	Digital Rebar docker registry	Rancher		

Servers

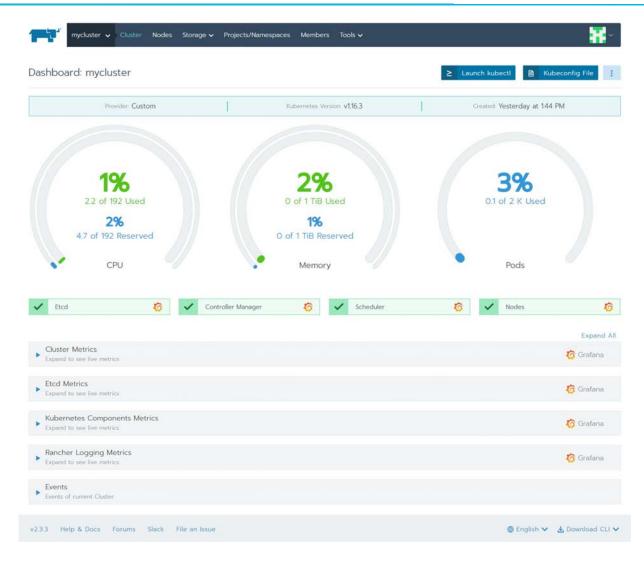
DRP (PXE server) DHCP (static IPs)

SCALE

compute	CRIMSON	2x 12c 256GB 10G
compute	CRIMSON	2x 12c 256GB 10G
compute	CRIMSON	2x 12c 256GB 10G
compute	CRIMSON	2x 12c 256GB 10G
	96 cores	1 TB memory

1st Step - Success! OSes Deployed

							Versions:	DR v4.2.6 8	UX v1.14.5				*	0	0 4	i	4
Endpoint 64:00:6a:68: 🗗	12		Machi	nes	Refresh	Add	Clone	Delete	Force								
.ogged in as rocketskates.	6		Run		24	۲	/ A		Þ	0	Machine Actions		6				
SYSTEM	•	Þ	E II		Wo	rkflow 🔹	+ -		e	3	poweron 👻 🤇	C C					
Machines		<u> </u>															
PluginsInfo & Preferences		×	Results:	000	ს ს 🕨												
🐴 License Manager			0	i (Name		Address		Profiles	₽	Workflow	S	tage		Task	Boo	tEnv
ITES MANAGER					node	01	192.168.88.11	5	۲	0	× ubuntu-wipe-instal	II 6	complete			0 10	ocal
IETWORKING	-				node	02	192.168.88.12 🖸	1	۲	0	🗙 ubuntu-wipe-instal	1	complete			0 10	ocal
Subnets					node	03	192.168.88.13 🖸	5	۲	0	🗙 ubuntu-wipe-instal		complete			0 10	ocal
C Leases					node	04	192.168.88.14 🖸	1	۲	0	🛪 ubuntu-wipe-instal	1 6	complete			0 10	ocal
Reservations	_																



myclu	uster 🗸 Cluster No	des Storage 🗸	Projects/Namespaces	Members Tools 🗸				×
Nodes								Edit Cluster
Cordon 🚺 Dr	ain 🗘 🛛 Delete 💼						Search	
🔲 State 🗘	Name 🗘			Roles 🗘	Version 🗘	CPU ᅌ	RAM 🗘	Pods 🔷
Active	node01 10.0.0.11 @			All	v1.16.3 ₩ 18.9.7	0.4/48 Cores	0.1/252 GiB	9/110 :
Active	node02 10.0.0.12 🛍			Worker	v1.16.3	0.3/48 Cores	0/252 GiB	3/110 :
Active	node03 10.0.0.13 🛍			Worker	v1.16.3	0.4/48 Cores	0.1/252 GiB	4/110 :
Active	node04 10.0.0.14 🛍			Worker	v1.16.3	0.3/48 Cores	0/252 GiB	3/110 :

4th Step - Success!

Workloads Configured

We Did This With Three Different Stacks

RANCHER 20 minutes to full cluster readiness	KSPHERE 60 minutes to full cluster readiness	TALOS 31.5 minutes to full cluster readiness	STACKS
1,650 pods	1,800 pods	3,000 pods	SLEEP CONTAINER
500 pods* * docker errors started at 507 pods, crashed at 600 pods	500 pods* * containers began to die, kubelet crashed at 550 pods	500 pods* *health checks began to fail at 500 pods	NGINX CONTAINER

** note that all these tests were done after overriding the default 110 maximum pods per node, as set by Kubernetes

Serverless

in the first function(b, f) {var fit below for the first for the fi

image: imag

ing"!=typeof b)ret

INTRODUCING AN ALL-NEW OPEN RACK SCALE SERVER CHOICE

PROVEN HYPERSCALE TECHNOLOGY PURPOSE BUILT READY TO DEPLOY DEPENDABLY AVAILABLE CONSISTENT PRODUCT

BUSINESS-CHANGING TCO

MEET YOUR GROWING DATA AND INFRASTRUCTURE DEMANDS WITH THE SAME OPEN HARDWARE AS THE WORLD'S LEADING HYPERSCALERS.

Call To Action

CHECK US OUT ON OUR WEBSITE:

bit.ly/webinar-uncomplicated

www.sesame.com

Watch Our Videos: Sesame By ITRenew <u>bit.ly/sesame-youtube</u>

QUESTIONS OR COMMENTS, REACH US:

@RiedelAtWork

@RiedelAtWork

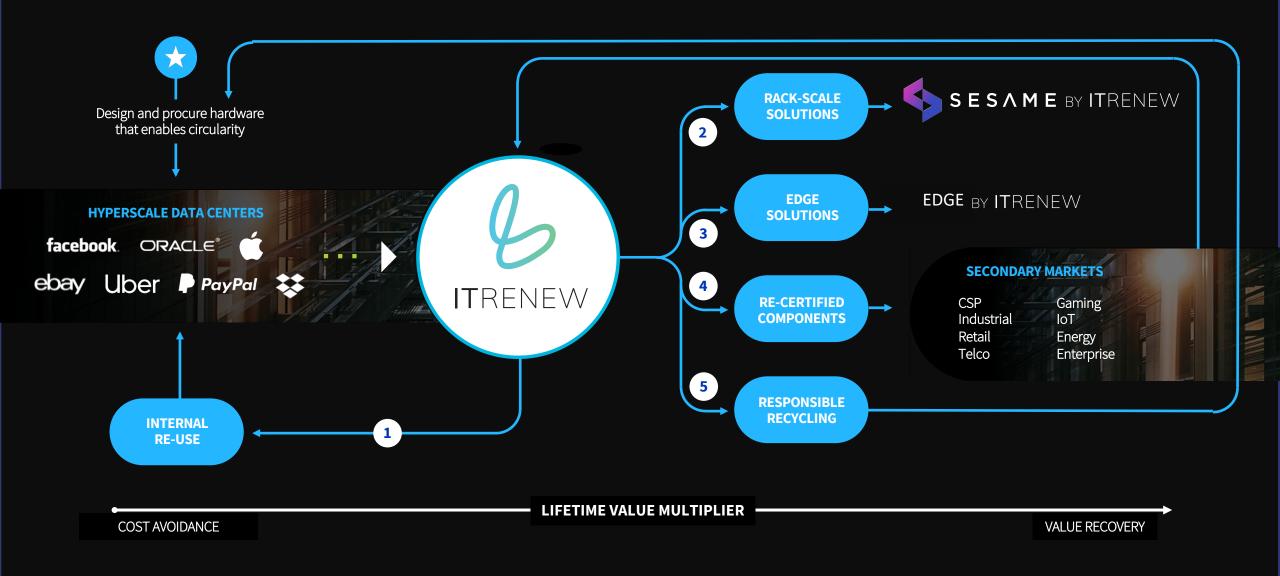
engineering leader, do-er, & creator @itrenewinc; pursuing sustainable #innovation; democratizing tech; #inclusive teams; think big; he/him

Boston, MA St twitter.com/er1p III Joined September 2016
 S

3,257 Following 801 Followers

SESAME BY ITRENEW

QUESTIONS


DATA CENTER IMPACT REPORT: THE FINANCIAL & SUSTAINABILITY CASE FOR CIRCULARITY

Download at itrenew.com

bit.ly/circular-report

SESAME BY ITRENEW

BACKGROUND

The Circular IT Hardware Industry Opportunity

40 million servers **31** million tonnes CO2e

million cars' annual emissions

