
Java performance - Java performance -
not so scary after allnot so scary after all

Holly CumminsHolly Cummins
IBM Hursley LabsIBM Hursley Labs

So ...

� You have a performance problem.

� What next?

4

Goals
� After this talk you will:

– Not feel abject terror when confronted with a
performance problem

– Understand when and why to use performance tools
– Have a toolkit of performance tools and techniques
– Get to know your Java application better

5

Speaker’s qualifications
� Holly is a software developer at IBM's UK lab

– Technical lead for the Health Center
– Developed the Garbage Collection and Memory

Visualizer
� Holly speaks regularly on performance and

garbage collection
� Holly has authored several articles for

developerWorks

6

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

7

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

Who cares about performance?
� We all do

– Sluggish web pages
– Annoying programs
– Hangs
– Crashes

Hardware and performance

� Moore's law predicts exponential growth in
hardware speed
– Software development corollary:

• How to double application performance? Wait 18 months
before releasing it!

Hardware and performance

� Moore's law predicts exponential growth in
hardware speed
– Software development corollary:

• How to double application performance? Wait 18 months
before releasing it!

� Clock speeds aren't going up at the same rates
anymore
– Software development corollary:

• Uh oh.

Bad performance costs
� “Poor application performance costs 1 in 3

enterprises over £1 million per year”
» (http://www.morse.com/press_9.htm)

Bad performance is costing you ...
� Electricity
� Employee productivity
� Lost business

– Example: unresponsive web pages
� Hard cash

– Example: Arbitrage trading
• Delays in reacting to fluctuating prices can cost millions

13

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

14

Fixing performance problems

� Where to start?

15

16

A general methodology
� Performance problems are caused by limited

resources
� Which resource is limited?

Finding the bottleneck

Finding the bottleneck

Resources to consider
� Applications may be

– CPU bound
– I/O bound
– Space bound
– “Lock bound” (contended)

Which resource is limited?
� CPU bound:

– CPU utilisation consistently high
� I/O bound

– CPU utilisation not consistently high
� Lock bound

– CPU utilisation not consistently high
� Space bound

– Any of the above!
� These heuristics aren't precise enough

What is the JVM doing?

Tools can help

Even better ... tools with
recommendations

� Recommendations
provide
– Visual indicator of

status
– Explanation of

problems and
solutions

– Suggested
command line

A word of caution
� Performance must be measured before

problems can be fixed
– Otherwise you risk making things worse with a

clever fix
� Performance measurement must be based on

your application and your quality of service
requirements

� Measurements must be made in a system as
similar as possible to the production one

How well is your application
performing?

� The simplest way to measure performance is
System.currentTimeMillis() in a test harness

� Performance can be very variable, so
measurements must be repeated

� Allow unmeasured warm-up period
– (If that's how the application will run)
– Allows caches to be populated and methods to

be compiled

27

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

IBM Performance Tools
� IBM provides a number of tools to identify

and fix performance bottlenecks
� The tools are all free
� Most – but not all – are for IBM JVMs only
� Tools available from IBM Support Assistant

IBM Support Assistant (ISA)
• Hosting for Serviceability

Tools across product families
• Automatic problem

determination data gathering
• Assist with opening PMR’s and

working with IBM Support
• Documentation:

– Aggregated search across
sources

– Regular updates to Diagnostics
Guide

hhhhhhttttttttttttp:p:p:p:p:p:////////////wwwwwwwwwwwwwwwwww......iiiiiibmbmbmbmbmbm......ccccccomomomomomom//////ssssssofofofofofofttttttwwwwwwaaaaaarrrrrreeeeee/s/s/s/s/s/suuuuuuppppppporporporporporportttttt/i/i/i/i/i/issssssaaaaaa

http://www.ibm.com/software/support/isa

30

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

31

Space-bound applications
� Memory is a crucial resource
� Excessive memory usage can cause:

– Poor throughput
– Unresponsive applications
– Unpredictable program behavior
– Crashes in the application

Diagnosing space-bound applications

� Space bound can be disguised as CPU bound
– Java has garbage collection
– If the GC is running excessively it will hog the CPU

� Space-bound can also be disguised as I/O bound
– Excessive “in use” footprint can cause

• Paging
• Cache misses

Checking memory usage in Java

Two approaches
� Verbose GC

– On IBM platforms, use -Xverbose:gc or -
Xverbosegclog:$file to write directly to a file

– Logs may be analyzed with a verbose gc analysis
tool

� Live memory monitoring
– Requires specialized tools

35

IBM Monitoring and Diagnostic tools
for Java – GC and Memory Visualizer

� Handles verbose GC from all versions of IBM
JVMs
– 1.4.2 through 1.6.0
– zSeries
– iSeries
– WebSphere real time

� … and Solaris platforms
� … and HP-UX platforms

GC and Memory Visualizer
capabilities

� Analyses
– heap usage
– heap size
– pause times
– many other properties

� Provides tuning recommendations
� Compares multiple logs in the same reports

37

The GC and Memory Visualizer
Heap Visualization

Heap occupancy

Pause times

38

The GC and Memory Visualizer -
Comparison & Advice

Compare runs…

Performance advisor…

What does GC tell you?
� High heap occupancy indicates an application

is likely space bound
– Increase heap size or lower application footprint

� If GC is using more than 10% or 20% of the CPU
action may be required
– Alternate choice of policy
– GC tuning

40

IBM Monitoring and Diagnostic Tools
for Java - Health Center

� Live monitoring tool with very low overhead
for IBM® Java™ 5.0 and 6.0
– 2.6% overhead against WebSphere benchmark (full

set of data being collected)
� Gives insight into how your application is

behaving
� Delivers set-up and tuning recommendations

to help avoid application problems

41

How the Health Center works

Agent must be installed into
your JVM and enabled with
a command-line option

Client (installed in the IBM
Support Assistant) makes a
network connection to the
agent

Health Center GC monitoring
• Visualises heap usage

and garbage
collection pause
times over time.

• Identifies memory
leaks

• Suggests command-
lines and tuning
parameters

• Same
recommendation
logic as GCMV

43

DEMO
� Using the Health Center to

check memory usage

44

Garbage Collection

Visualize garbage collection (GC)
to spot trends and catch
problems before they occur

Get recommendations
about GC policies and
heap sizes

Check GC rate and time
statistics

45

Check GC performance
Low mean pause time – GC
probably not the cause of any
unresponsiveness

What's the problem?
Application throughput, or
responsiveness?

High percentage of time
spent paused – 40%... ...but also a high rate of garbage

collection. Do I expect to be
generating this much garbage?

Assessing Footprint
� Is the footprint too big?

Assessing Footprint
� Is the footprint too big?
� Is the footprint growing?

– Bad bad news

Assessing Footprint
� Is the footprint too big?
� Is the footprint growing?

– Bad bad news
� If left unchecked, a memory leak will eventually

cause a crash

Memory leaks in Java?
� Memory leaks happen when objects which are

no longer required still use up memory
� Two kinds of memory leak:

– Losing a reference to an object which is no longer
in use

– Holding on to a reference for an object which is no
longer in use

� Garbage collection eliminates the first kind, but
not the second

Diagnosing footprint issues
� You need to know what objects are on the

heap
� Heap dumps are a record of every object on

the heap
– Automatically produced on OutOfMemoryErrors
– Can be triggered programatically

� Extremely useful for problem solving, but
tooling support is essential

51

Memory Analyzer
• Open source heap dump analysis

tool
• Wide platform coverage

– HPROF dumps from HotSpot based
JVMs

– DTFJ system dumps from IBM JVMs
– Portable Heap Dumps (PHD) file

from IBM JVMs

• Available from
– www.eclipse.org
– IBM Support Assistant

http://www.eclipse.org/

52

Detailed view of heap contents

53

DEMO

� Using the Memory Analyzer to
identify memory consumers

54

Optimizing footprint

� Inspect the set of retained objects
– Use dominator tree
– Use histogram

� Search for inefficiently used data structures
� Look for redundant data

– Use “Group by Value”

Don't forget native memory
� Java applications use – and may leak - native

memory
� Low occupancy is no guarantee an application

is not space bound.
� Native memory use is not logged in verbose GC
� OutOfMemory errors may occur even though

there is lots of room in the heap

Tracking native memory usage

� Use platform-specific tools
– Windows perfmon tool
– Linux ps
– AIX vmstat

GCMV and native memory

� GCMV can
visualize native
memory

� Provides
recommendations

58

Identifying native memory contents

� What is in the non-heap memory?
– Internal JVM data
– Interned Strings (for some JVMs)
– Classes (for some JVMs)
– NIO direct byte buffers
– Thread data

� Difficult to analyze native memory directly
– But ... some of these have wrapper objects in the Java

heap

59

Using Memory Analyzer

� Heap dump analysis can be used to identify some
native memory issues
– Are there a lot of Thread objects?
– Are there a lot of NIO direct byte buffers?

60

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

CPU bound applications
� Code is being invoked more than it needs to be

– Easily done with event-driven models
� An algorithm is not the most efficient

– Easily done without algorithms research!

Diagnosing CPU bound applications

� Fixing CPU bound applications requires
knowledge of what code is being run
– Identify methods which are suitable for optimisation

• Optimising methods which the application doesn't spend
time in is a waste of your time

– Identify methods where more time is being spent than
you expect
• “Why is so much of my profile in calls to this trivial little

method?”

Method trace and profiling
� There are two ways to work out what code

your application is doing
– Trace
– Sampling profiling

Method trace
� Tracing

– Does not require specialist tools (but is better
with them)

– Records every invocation of a subset of methods
– Gives insight into sequence of events
– In the simplest case, System.out.println
– Usually focussed on targeted packages or

methods

Method profiling
� Profiling

– Requires specialist tools
– Samples all methods and provides statistics
– Can give a broad picture of application activity

IBM Java method trace

Not overhead-free, but
lower overhead than
equivalent function
implemented in Java

� Entry and exit trace for any Java methods
� Instrumentation-free, and no extra code required
� No fancy GUI, but very very powerful

Controlling what is traced

� Can select on package, class or method name:
– Package: methods={java/lang/*}
– Class: methods={java/lang/String.*}
– Method: methods={HelloWorld.main}

� Also ! operator and combination allowed:
– methods={java/lang/*,!java/lang/String*}

� Possible to create huge volume of output, so use
sensible method specifications!

Triggering events

� Can request certain actions occur when chosen
methods are entered or exited

� Actions such as coredump, javadump, etc.
� Actions such as enabling more method trace!
� Can cause action to occur on n’th instance of

trigger condition
� Can specify how many times the action occurs

Method profiling with Health Center
• Always-on profiling offers

insight into application
activity

• Identifies the hottest
methods in an application

• Full call stacks to identify
where methods are being
called from and what
methods they call

• No bytecode
instrumentation, no
recompiling

70

DEMO
� Using the Health Center

to optimise a code path

71

Profiling

Low-overhead sampling
profiler shows which Java
code is hottest

Dig deeper into the data to
see why a method is being
caled

Self: time spent in
this method

Tree: time spent in
this method and
methods it called

See which code
branches are run most
often

72

Identify a problem method
Do any methods stand out
as particularly hot?

Do I expect my application to be
primarily doing regex pattern
compilation?

Which methods are calling
Pattern.compile? Could I optimize to
call Pattern.compile less?

Need to either make
Pattern.compile() more
efficient or call it less

73

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

74

Diagnosing I/O-bound applications
� A number of tools may be required to isolate

the causes of I/O delays
� Use the GC and Memory Visualizer to check

sweep times
– Sweep times should be very short
– Long sweep times indicate access to memory is

slow (paging)
� Use method trace to trace calls to network and

disk I/O

75

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

Concurrency and performance
� Hardware speed is being achieved by scaling out

instead of up
� Getting performance gains from multicore

systems is hard
� Concurrency is next great challenge in software

engineering
– Designing for concurrency is hard
– Threads need to synchronize with each other to have a

chance of application correctness

Concurrency and performance (ii)

� Synchronization has a performance cost
– Effectively makes execution single-core

� This cost goes up with the number of cores
– Synchronization needs to be a lot smarter on huge

systems
– At some point synchronization becomes the main

performance bottleneck
� Even on two-core systems, locking can be a big

performance cost

78

Diagnosing lock bound applications
� Poor synchronization can cause significant

application delays
� IBM provides tooling to quickly diagnose and

identify contended locks
– Health Center provides information on locks used

in Java applications and the JVM

Lock analysis
– Always-on lock

monitoring
– Quickly allows the

usage of all of locks
to be profiled

– Identifies locks
which might be
preventing the
application from
scaling

80

Identify lock contention
Orange or red colour
indicates most of the
attempts to synchronize
were blocked

Tall bar indicates a large
number of requests were
blocked

High average hold time
indicates we're holding the
lock a long time – doing too
much work in it?

81

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization

So ...

� You have a performance problem ...

� You diagnose and fix it.

Conclusions
� Improving application performance starts with

identifying limited resources
� Tools can help fix performance bottlenecks

– Space bound
• GC and Memory Visualizer/Health Center
• Memory Analyzer

– CPU bound
• Health Center

– Lock bound
• Health Center

85

– IBM Support Assistant
• http://www-01.ibm.com/software/support/isa/

– IBM Monitoring and Diagnostic Tools for Java
• www.ibm.com/developerworks/java/jdk/tools/

– Health Center YouTube videos
• http://www.youtube.com/watch?v=5Tcktcl0qxs (overview)
• http://www.youtube.com/watch?v=6WjE9U0jvEk (client install)
• http://www.youtube.com/watch?v=Hdp0mJ13NLQ (agent install)

� Health Center Forum
– http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461

� Email javatool@uk.ibm.com

Where to find more information

� The following terms are trademarks of International Business
Machines Corporation in the United States, other countries, or
both:
– IBM
– z/OS
– PowerPC
– WebSphere

� Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

� Solaris is a trademark of Sun Microsystems, Inc.
� Intel is a trademarks of Intel Corporation or its subsidiaries in

the United States, other countries, or both

87

Any Questions?

