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So ...

� You have a performance problem. 

� What next?
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Goals
� After this talk you will:

– Not feel abject terror when confronted with a 
performance problem

– Understand when and why to use performance tools 
– Have a toolkit of performance tools and techniques
– Get to know your Java application better
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Speaker’s qualifications
� Holly is a software developer at IBM's UK lab

– Technical lead for the Health Center
– Developed the Garbage Collection and Memory 

Visualizer
� Holly speaks regularly on performance and 

garbage collection
� Holly has authored several articles for 

developerWorks
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Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization
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Who cares about performance?
� We all do

– Sluggish web pages
– Annoying programs
– Hangs
– Crashes



Hardware and performance

� Moore's law predicts exponential growth in 
hardware speed
– Software development corollary: 

• How to double application performance? Wait 18 months 
before releasing it!



Hardware and performance

� Moore's law predicts exponential growth in 
hardware speed
– Software development corollary: 

• How to double application performance? Wait 18 months 
before releasing it!

� Clock speeds aren't going up at the same rates 
anymore 
– Software development corollary:

• Uh oh.



Bad performance costs
� “Poor application performance costs 1 in 3 

enterprises over £1 million per year” 
» (http://www.morse.com/press_9.htm)



Bad performance is costing you ... 
� Electricity
� Employee productivity
� Lost business

– Example: unresponsive web pages
� Hard cash 

– Example: Arbitrage trading
• Delays in reacting to fluctuating prices can cost millions
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Fixing performance problems

� Where to start?
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A general methodology
� Performance problems are caused by limited 

resources
� Which resource is limited?



Finding the bottleneck



Finding the bottleneck



Resources to consider
� Applications may be

– CPU bound
– I/O bound
– Space bound
– “Lock bound” (contended)



Which resource is limited?
� CPU bound: 

– CPU utilisation consistently high 
� I/O bound

– CPU utilisation not consistently high
� Lock bound

– CPU utilisation not consistently high
� Space bound 

– Any of the above!
� These heuristics aren't precise enough



What is the JVM doing?



Tools can help



Even better ... tools with 
recommendations 

� Recommendations 
provide
– Visual indicator of 

status
– Explanation of  

problems and 
solutions

– Suggested 
command line



A word of caution
� Performance must be measured before 

problems can be fixed
– Otherwise you risk making things worse with a 

clever fix
� Performance measurement must be based on 

your application and your quality of service 
requirements

� Measurements must be made in a system as 
similar as possible to the production one



How well is your application 
performing?

� The simplest way to measure performance is 
System.currentTimeMillis() in a test harness

� Performance can be very variable, so 
measurements must be repeated 

� Allow unmeasured warm-up period
– (If that's how the application will run)
– Allows caches to be populated and methods to 

be compiled
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IBM Performance Tools
� IBM provides a number of tools to identify 

and fix performance bottlenecks
� The tools are all free
� Most – but not all – are for IBM JVMs only
� Tools available from IBM Support Assistant 



IBM Support Assistant (ISA)
• Hosting for Serviceability 

Tools across product families
• Automatic problem 

determination data gathering
• Assist with opening PMR’s and 

working with IBM Support
• Documentation:

– Aggregated search across 
sources

– Regular updates to Diagnostics 
Guide

hhhhhhttttttttttttp:p:p:p:p:p:////////////wwwwwwwwwwwwwwwwww......iiiiiibmbmbmbmbmbm......ccccccomomomomomom//////ssssssofofofofofofttttttwwwwwwaaaaaarrrrrreeeeee/s/s/s/s/s/suuuuuuppppppporporporporporportttttt/i/i/i/i/i/issssssaaaaaa

http://www.ibm.com/software/support/isa
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Space-bound applications
� Memory is a crucial resource
� Excessive memory usage can cause:

– Poor throughput
– Unresponsive applications
– Unpredictable program behavior
– Crashes in the application



Diagnosing space-bound applications

� Space bound can be disguised as CPU bound
– Java has garbage collection
– If the GC is running excessively it will hog the CPU

� Space-bound can also be disguised as I/O bound
– Excessive “in use” footprint can cause 

• Paging 
• Cache misses



Checking memory usage in Java



Two approaches
� Verbose GC

– On IBM platforms, use -Xverbose:gc or -
Xverbosegclog:$file to write directly to a file

– Logs may be analyzed with a verbose gc analysis 
tool

� Live memory monitoring
– Requires specialized tools
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IBM Monitoring and Diagnostic tools 
for Java – GC and Memory Visualizer

� Handles verbose GC from all versions of IBM 
JVMs
– 1.4.2 through 1.6.0
– zSeries
– iSeries
– WebSphere real time 

� … and Solaris platforms
� … and HP-UX platforms 



GC and Memory Visualizer 
capabilities

� Analyses 
– heap usage
– heap size
– pause times
– many other properties

� Provides tuning recommendations
� Compares multiple logs in the same reports 
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The GC and Memory Visualizer 
Heap Visualization

Heap occupancy

Pause times
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The GC and Memory Visualizer - 
Comparison & Advice

Compare runs…

Performance advisor…



What does GC tell you?
� High heap occupancy indicates an application 

is likely space bound
– Increase heap size or lower application footprint

� If GC is using more than 10% or 20% of the CPU 
action may be required 
– Alternate choice of policy 
– GC tuning 
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IBM Monitoring and Diagnostic Tools 
for Java - Health Center

� Live monitoring tool with very low overhead 
for IBM® Java™ 5.0 and 6.0
– 2.6% overhead against WebSphere benchmark (full 

set of data being collected)
� Gives insight into how your application is 

behaving
� Delivers set-up and tuning recommendations 

to help avoid application problems
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How the Health Center works

Agent must be installed into 
your JVM and enabled with 
a command-line option

Client (installed in the IBM 
Support Assistant) makes a 
network connection to the 
agent



Health Center GC monitoring
• Visualises heap usage 

and garbage 
collection pause 
times over time.

• Identifies memory 
leaks 

• Suggests command-
lines and tuning 
parameters

• Same 
recommendation 
logic as GCMV
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DEMO
� Using the Health Center to 

check memory usage
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Garbage Collection

Visualize garbage collection (GC) 
to spot trends and catch 
problems before they occur

Get recommendations 
about GC policies and 
heap sizes

Check GC rate and time 
statistics
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Check GC performance
Low mean pause time – GC 
probably not the cause of any 
unresponsiveness

What's the problem?  
Application throughput, or 
responsiveness?

High percentage of time 
spent paused – 40%... ...but also a high rate of garbage 

collection.  Do I expect to be 
generating this much garbage?



Assessing Footprint
� Is the footprint too big?



Assessing Footprint
� Is the footprint too big?
� Is the footprint growing?

– Bad bad news



Assessing Footprint
� Is the footprint too big?
� Is the footprint growing?

– Bad bad news
� If left unchecked, a memory leak will eventually 

cause a crash



Memory leaks in Java?
� Memory leaks happen when objects which are 

no longer required still use up memory
� Two kinds of memory leak:

– Losing a reference to an object which is no longer 
in use 

– Holding on to a reference for an object which is no 
longer in use

� Garbage collection eliminates the first kind, but 
not the second



Diagnosing footprint issues
� You need to know what objects are on the 

heap 
� Heap dumps are a record of every object on 

the heap
– Automatically produced on OutOfMemoryErrors
– Can be triggered programatically

� Extremely useful for problem solving, but 
tooling support is essential
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Memory Analyzer
• Open source heap dump analysis 

tool
• Wide platform coverage

– HPROF dumps from HotSpot based 
JVMs

– DTFJ system dumps from IBM JVMs
– Portable Heap Dumps (PHD) file 

from IBM JVMs

• Available from
– www.eclipse.org
– IBM Support Assistant

http://www.eclipse.org/
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Detailed view of heap contents
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DEMO

� Using the Memory Analyzer to 
identify memory consumers
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Optimizing footprint

� Inspect the set of retained objects
– Use dominator tree
– Use histogram

� Search for inefficiently used data structures
� Look for redundant data

– Use “Group by Value”



Don't forget native memory
� Java applications use – and may leak - native 

memory
� Low occupancy is no guarantee an application 

is not space bound.
� Native memory use is not logged in verbose GC
� OutOfMemory errors may occur even though 

there is lots of room in the heap



Tracking native memory usage

� Use platform-specific tools
– Windows perfmon tool 
– Linux ps 
– AIX vmstat



GCMV and native memory

� GCMV can 
visualize native 
memory

� Provides 
recommendations
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Identifying native memory contents

� What is in the non-heap memory?
– Internal JVM data
– Interned Strings (for some JVMs)
– Classes (for some JVMs)
– NIO direct byte buffers
– Thread data

� Difficult to analyze native memory directly 
– But ... some of these have wrapper objects in the Java 

heap
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Using Memory Analyzer

� Heap dump analysis can be used to identify some 
native memory issues
– Are there a lot of Thread objects?
– Are there a lot of NIO direct byte buffers? 



60

Agenda

� Performance – why it's actually cool and fun
� Performance tuning techniques
� Tools for identifying bottlenecks

– Memory
– CPU
– I/O
– Synchronization



CPU bound applications
� Code is being invoked more than it needs to be 

– Easily done with event-driven models
� An algorithm is not the most efficient 

– Easily done without algorithms research!



Diagnosing CPU bound applications

� Fixing CPU bound applications requires 
knowledge of what code is being run
– Identify methods which are suitable for optimisation 

• Optimising methods which the application doesn't spend 
time in is a waste of your time 

– Identify methods where more time is being spent than 
you expect
• “Why is so much of my profile in calls to this trivial little 

method?”



Method trace and profiling
� There are two ways to work out what code 

your application is doing 
– Trace
– Sampling profiling



Method trace
� Tracing

– Does not require specialist tools (but is better 
with them)

– Records every invocation of a subset of methods
– Gives insight into sequence of events 
– In the simplest case, System.out.println 
– Usually focussed on targeted packages or 

methods



Method profiling
� Profiling

– Requires specialist tools 
– Samples all methods and provides statistics
– Can give a broad picture of application activity



IBM Java method trace

Not overhead-free, but 
lower overhead than 
equivalent function 
implemented in Java

� Entry and exit trace for any Java methods
� Instrumentation-free, and no extra code required
� No fancy GUI, but very very powerful



Controlling what is traced

� Can select on package, class or method name:
– Package: methods={java/lang/*}
– Class: methods={java/lang/String.*}
– Method: methods={HelloWorld.main}

� Also ! operator and combination allowed:
– methods={java/lang/*,!java/lang/String*}

� Possible to create huge volume of output, so use 
sensible method specifications!



Triggering events

� Can request certain actions occur when chosen 
methods are entered or exited

� Actions such as coredump, javadump, etc.
� Actions such as enabling more method trace!
� Can cause action to occur on n’th instance of 

trigger condition
� Can specify how many times the action occurs



Method  profiling with Health Center
• Always-on profiling offers 

insight into application 
activity

• Identifies the hottest 
methods in an application

• Full call stacks to identify 
where methods are being 
called from and what 
methods they call

• No bytecode 
instrumentation, no 
recompiling
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DEMO
� Using the Health Center 

to optimise a code path
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Profiling

Low-overhead sampling 
profiler shows which Java 
code is hottest

Dig deeper into the data to 
see why a method is being 
caled

Self: time spent in 
this method

Tree: time spent in 
this method and 
methods it called

See which code 
branches are run most 
often
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Identify a problem method
Do any methods stand out 
as particularly hot?

Do I expect my application to be 
primarily doing regex pattern 
compilation?

Which methods are calling 
Pattern.compile?  Could I optimize to 
call Pattern.compile less?

Need to either make 
Pattern.compile() more 
efficient or call it less
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Diagnosing I/O-bound applications
� A number of tools may be required to isolate 

the causes of I/O delays
� Use the GC and Memory Visualizer to check 

sweep times
– Sweep times should be very short 
– Long sweep times indicate access to memory is 

slow (paging)
� Use method trace to trace calls to network and 

disk I/O
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Concurrency and performance
� Hardware speed is being achieved by scaling out 

instead of up
� Getting performance gains from multicore 

systems is hard
� Concurrency is next great challenge in software 

engineering 
– Designing for concurrency is hard
– Threads need to synchronize with each other to have a 

chance of application correctness



Concurrency and performance (ii)

� Synchronization has a performance cost 
– Effectively makes execution single-core

� This cost goes up with the number of cores
– Synchronization needs to be a lot smarter on huge 

systems
– At some point synchronization becomes the main 

performance bottleneck
� Even on two-core systems, locking can be a big 

performance cost 
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Diagnosing lock bound applications
� Poor synchronization can cause significant 

application delays
� IBM provides tooling to quickly diagnose and 

identify contended locks
– Health Center provides information on locks used 

in Java applications and the JVM



Lock analysis
– Always-on lock 

monitoring
– Quickly allows the 

usage of all of locks 
to be profiled

– Identifies locks 
which might be 
preventing the 
application from 
scaling
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Identify lock contention
Orange or red colour 
indicates most of the 
attempts to synchronize 
were blocked

Tall bar indicates a large 
number of requests were 
blocked

High average hold time 
indicates we're holding the 
lock a long time – doing too 
much work in it?
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So ...

� You have a performance problem ...

� You diagnose and fix it.





Conclusions
� Improving application performance starts with 

identifying limited resources
� Tools can help fix performance bottlenecks

– Space bound 
• GC and Memory Visualizer/Health Center
• Memory Analyzer

– CPU bound 
• Health Center

– Lock bound
• Health Center
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– IBM Support Assistant
• http://www-01.ibm.com/software/support/isa/

– IBM Monitoring and Diagnostic Tools for Java
• www.ibm.com/developerworks/java/jdk/tools/

– Health Center YouTube videos
• http://www.youtube.com/watch?v=5Tcktcl0qxs (overview)
• http://www.youtube.com/watch?v=6WjE9U0jvEk (client install)
• http://www.youtube.com/watch?v=Hdp0mJ13NLQ (agent install)

� Health Center Forum
– http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461

� Email javatool@uk.ibm.com

Where to find more information



� The following terms are trademarks of International Business 
Machines Corporation in the United States, other countries, or 
both:
– IBM
– z/OS
– PowerPC
– WebSphere

� Java and all Java-based trademarks are trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or 
both.

� Solaris is a trademark of Sun Microsystems, Inc.
� Intel is a trademarks of Intel Corporation or its subsidiaries in 

the United States, other countries, or both
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Any Questions?


