Holly Curnrins
IBM Hursley Labs

Java performance -
not so scary after all

Let’'s move the Java world! GQGCON

So ...

You have a performance problem.

What next?

Let's move the Java world! GGCCON

WO XXOASP'MMM

5
Q
0
\\
O

Goals

After this talk you will:

— Not feel abject terror when confronted with a
performance problem

— Understand when and why to use performance tools
— Have a toolkit of performance tools and techniques
— Get to know your Java application better

Let's move the Java world! GGCCON

Speaker’s qualifications

Holly is a software developer at IBM's UK lab

— Technical lead for the Health Center

— Developed the Garbage Collection and Memory
Visualizer

Holly speaks regularly on performance and
garbage collection

Holly has authored several articles for
developerWorks

Let's move the Java world!

5

GeeCON

Agenda

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
— Memory

— CPU

—1/0

— Synchronization

6

Let's move the Java world! GGCCON

Agenda

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
— Memory
— CPU

- 1/0
— Synchronization

.
Let's move the Java world! GGGCON

Who cares about performance?

We all do

— Sluggish web pages
— Annhoying programs
— Hangs

— Crashes

Let's move the Java world! GGGCON

Hardware and performance

Moore's law predicts exponential growth in
hardware speed

— Software development corollary:

* How to double application performance? Wait 18 months
before releasing it!

Let's move the Java world! GGCCON

Hardware and performance

Moore's law predicts exponential growth in
hardware speed

— Software development corollary:

* How to double application performance? Wait 18 months
before releasing it!

Clock speeds aren't going up at the same rates
anymore

— Software development corollary:
* Uh oh.

Let's move the Java world! GGCCON

om

~A i
WWW.devc

Bad performance costs

“Poor application performance costs 1 in 3
enterprises over £1 million per year”

» (http://www.morse.com/press 9.htm)

Let's move the Java world!

GeeCON

Bad performance is costing you ...

Electricity

Employee productivity

Lost business

— Example: unresponsive web pages

Hard cash

— Example: Arbitrage trading
* Delays in reacting to fluctuating prices can cost millions

Let's move the Java world! GGCCON

Agenda

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
— Memory

— CPU

—1/0

— Synchronization

13

Let's move the Java world! GGCCON

Www

Fixing performance problems

Where to start?

Let's move the Java world!

14

. GeeCON

WebLogic Workshop 8.1

Java EE

2 i & y
INANUTSHELL

SC T.,.:...,_\ ns

J2ME

ecl .._ar... _.C.@l?w

lava ._.Nmm.._._w Patterns | (S _,;..;n A3y o = F
o T etk i
: r eclipse <1
, ‘ ' . T.fr Plugrins ==
et 2 ! en:__#c %< £
. . ; g / m e, B S
: . — . . R 4 1 cipse Distileg lm\
y . pee | ,_, nl.__v.f... Modeling Framens e
. / | o eclipse wocsing fomes 33
z W}
| eclipse wodsng fomewss
y f | 1L eclipse vossng Famern

omes eclipse

i E::.ﬁ__ ._.E.m Ssi._mm
B Systems with J2EE

Hardonrea

eclipse 205

Wﬂ. VR DETTLOTMEN

il Java 6 Platform Revealed

Foundations of

AOP ror J2EE Development

W T\'| | e

| Java Threads
e | Decompiling Java

Illllii

' Creating Mobile Games

Enterprive Ly —
og_w:shh” 3 o g W

e e) < b

e ———
1 Clients

Pty

_,._m<m i
itk Swieve Interfaces

154 Java RMI
2 Patterns in Java vome 1 |

114 Java 1.2 and Favaseripe T Patterns in Java | ||
A@MOHOM__EO*NWM“EW” F) * i *7 &

=, h.P(b TESTING © :_‘/__ﬁ./
= |13 J2EE Design Patterns

in Java Velume 2

Java Objects

=3
£
|
£
=
@
(-]

, e JAVA

Vastery e .

L Lo

Inside Mmz_.mw ;|

SECOND EDITI

Callaway

_E SEAM IN ACTION _
o[SEAM INACTION | _

btamas

e JAVA

QuickTime for Java® A Deveisper’s Hedebeed”

.\4 apaus Alice In Actlon with Java

WebLogic Workshop 8.1 o

lm

;..;_. Ph

-‘(ld H.sz _./.,,; .ﬁ.;_.:._ #

[

eclipse Plugins

lava dnm...._..m Patterns e 5..,;‘,

| e) - S e, .
f 4 . Wi, n.m..fmm_q W .
e _;v./.‘. Eeeacie N bty
ugrn ~a
ﬁ.h:ﬂ._/f ¥ = i =
ety DA
,_, ...L.__Yc ioclng i
.,.L.__#.c Modsing Frames
,_ | eclipse wodsng fomewss i
/ | ; m_r,..;x,n Fotiling irmescit
: | = eclipse

- emnima 200-udS & J0E02TET

RO for J2EE Developr | [A\ o ——
St : Performance Tunin

@ [JAVA Threads [e —

13
o

Loa

5 =

182 JWVA3D Programming

ﬁq-“ Fﬁ.ﬁ._.:.nwam
&4 Decompiling Java

=3 T

W 1 Im.mm_hmaa.—q.n
WMM , mgﬂu EXAM

- e

wj.

e . : Pro Wicket
The J2Ef ! ;] : ——

: 58 Java: Nati
Tutorial ; 43 i . with swy Ve Interfaces

M. e g, : A Java RML

Tim Lavers

-1 [™ SEAMIN ACTION : ..,_m__“_m,.mmd___.ww |
i [™ SEAMIN ACTION

Callaway
L
o

Programming

QuickTime for Java® 4 Davetepes Ne

Habutt R i win . 11 ey WA Reflection -
| 0 A A NUTSUEL E
- i snaus Alica in Astion with Jave | - J :é \ :

5 JavaEEand NET it '
*

il ﬁ__h BM WebSRRSr®
\lﬂﬁﬂ.ﬂ“q‘ga—a

— st
A o

A general methodology

Performance problems are caused by limited
resources

Which resource is limited?

Let's move the Java world! GGGCON

www.devoxx.com

Finding the bottleneck

Let's move the Javg

Finding the bottleneck

www.devox

Let's move the Javg

Resources to consider

Applications may be

— CPU bound

—1/0 bound

— Space bound

— “Lock bound” (contended)

Let's move the Java world! GGGCON

Which resource i1s limited?

CPU bound:
— CPU utilisation consistently high

170
- C
Loc
- C

bound
PU utilisation not consistently high

K bound

PU utilisation not consistently high

Space bound
— Any of the above!

These heuristics aren't precise enough

Let's move the Java world!

GeeCON

What is the JVM doing?

www.devoxx

Let's move the Java world! GeeCON

www.devoxx.com

Tools can help

Let's move the Java world!

GeeCON

Even better ... tools with
recommendations

Recommendations
provide

— Visual indicator of
status

— Explanation of
problems and
solutions

— Suggested
command line

www.devoxx.com

1 Tuning recommendation &3 = 8

The application seems to be using some quite —

large objects. The largest request which triggered
an allocation failure (and was recorded in the
verbose gc log) was for 647 KB.

& The mean occupancy is 61%. This is close to
optimal, so you do not need to tune your heap size.
@ Heap usage seems to be growing over time. It

increased by 47% in the last third of the log
compared to the middle of the log.However, the
number of collections decreased by 54%. This
indicates that the rate at which your application is
producing garbage seems to be slowing down. This
may mean that your application will reach a steady-
state at which the heap usage will no longer be
increasing.

[<]]

Let's move the Java world! ‘ GGCCON

A word of caution

Performance must be measured before
problems can be fixed

— Otherwise you risk making things worse with a
clever fix

Performance measurement must be based on
your application and your quality of service
requirements

Measurements must be made in a system as
similar as possible to the production one

Let's move the Java world! GGCCON

How well Is your application

performing?

The simplest way to measure performance is
System.currentTimeMillis() in a test harness

Performance can be very variable, so
measurements must be repeated

Allow unmeasured warm-up period
— (If that's how the application will run)

— Allows caches to be populated and methods to
be compiled

Let's move the Java world!

GeeCON

Agenda

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
— Memory

— CPU

—1/0

— Synchronization

27

Let's move the Java world! GGCCON

IBM Performance Tools

IBM provides a number of tools to identify
and fix performance bottlenecks

The tools are all free
Most — but not all — are for IBM JVMs only

Tools available from IBM Support Assistant

Let's move the Java world!

GeeCON

oxx.com

]
VAN AT (o
NWW.dev

d

IBM Support Assistant (ISA)

» Hosting for Serviceability
Tools across product families

» Automatic problem
determination data gathering

* Assist with opening PMR’s and
working with IBM Support
» Documentation:

— Aggregated search across
sources

— Regular updates to Diagnostics
Guide

§+|BM Support Assistant B@

Support Assistant

Welcome Search | Product Information | Tools | Service Updater | Preferences Feedback Help About

Welcome to IBM Support Assistant

IBM Support Assistant is a local serviceability workbench that helps yvou resolve vour product challenges. Use
the Updater component to add products and tools that are important to you. Then use the Search, Product
Information, Tools, and Service components to help you find answers and solve problems.

| ™ Search Q HETME

, x 2 Submit a problem report to IBM expedited with
Query multiple sources of support information S IATIC St Polactan

Gﬁ? Product Information I_ Updater

Quickly find the right IBM site for yvour product questions Add IBM products and tools to IBM Support

Assistant
(s
ﬁg"’ Tools

Investigate product problems using specialized analysis
tools

Let's move the Java world! GGCCON

http://www.ibm.com/software/support/isa

Agenda

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
— Memory

— CPU

- 1/0

— Synchronization

30

Let's move the Java world! GGCCON

Space-bound applications

Memory is a crucial resource

Excessive memory usage can cause:
— Poor throughput

— Unresponsive applications

— Unpredictable program behavior

— Crashes in the application

31

Let's move the Java world! GGCCON

Diagnosing space-bound applications

Space bound can be disguised as CPU bound

— Java has garbage collection

— If the GC Is running excessively 1t will hog the CPU
Space-bound can also be disguised as I/0 bound

— Excessive “In use” footprint can cause
* Paging
 Cache misses

Let's move the Java world! GGCCON

www.devoxx.com

Checking memory usage In Java

Let's move the Java world! > % GGGCON

Two approaches

Verbose GC

— On IBM platforms, use -Xverbose:gc or -
Xverbosegclog:$file to write directly to a file

— Logs may be analyzed with a verbose gc analysis
tool

Live memory monitoring
— Requires specialized tools

Let's move the Java world!

GeeCON

IBM Monitoring and Diagnostic tools
for Java — GC and Memory Visualizer

Handles verbose GC from all versions of IBM
JVMs

—1.4.2 through 1.6.0

— z5eries

— i1Series

— WebSphere real time

-~ and Solaris platforms

-+ and HP-UX platforms

35

Let's move the Java world! GGGCON

GC and Memory Visualizer

capabilities
Analyses
— heap usage
— heap size

— pause times
— many other properties

Provides tuning recommendations

Compares multiple logs in the same reports

Let's move the Java world! GGCCON

The GC and Memory Visualizer
Heap Visualization

Extensible Verbose Toolkit E]@@
File Edit Parsers Postprocessors Displayers VGC Data View Help

Free heap (after collection) and Heap size
1621
Extensible Verbose Toolkit
File Edit Parsers Postprocessors Displayers VGC Data View Help
1379 : 7 = =
Minl | 5 Data set 1 & | g
=0 Pause times (including exclusive access)
2.63
1138 Me)
=]
— Normalise
o
ém o 2.19 Minimum
2 s
Y Axi
ME ||
655 I: 1.75
MB
|
Min| ‘g
413 T:’ 131
£
== B
May
171
0.0 0.03 0.05 0.08 0.1 0.13 0.15 Femy
time (hours) A
optavgpause.vgc! Reporr‘ Data ILme plnt] L) Minimum
0.06 sec
- =)
font
S Heap occupanc -
J 2.57 sec
;f\ 0.0 0.39 0.77 1.16 1.55 1.93 232 S
@] time (hours)
S
_%; genconwithsametimestamps.vgc | Reponi Dat.aILme p\oti
g
=

Pause times

37

Let's move the Java world! “ GCGCON

www.devoxx.com

The GC and Memory Visualizer -
Comparison & Advice

Extensible Verbose Toolkit

File Edit Parsers Postprocessors Displayers VGC Data View Help

O Data set 1 S@l

Pause times (not including exclusive access)

B

Performance advisor:--

510
425
Turng recomsmendsation
Summany
340 Heap size
Used hesp {ahter collection
JVM restarts
n
E
= 255
E

170 / /

85.01

0.0

0.0 204 408 612 816 1019
time from start (sec)

defadllspecjbboptavgpauseﬂ.vgc| Reporl| Data {Line p\m:J defaultlspecjbboptthruput-0.vge

Compare runs:--

Tuning recommendation

3 1o heap size was quite vansbie This will be caising uRnecessary compaction. |f yeur appicatior's warkioad is relathvely steacy, yeu should consider foxdng the hesp
size. This should improve performance in twa ways; changing the heap size is rather expansive for the garbage collector because it must compact first, and fewer
collections will be requirsd if your application is NOt running in a heap which is too small.

3 1.1 ane poir ep6a chiects were queved for finslization. Using finalizers & not recommended 25 it can skow garbage collsction and cause wasted space in the heap,
Consider reviewing your application for occurences of the finaize() method.

& the mean occupancy s 55%. This is high, sa you may improve appication perfarmance by increasing your heap sire. Increasing the heap size should reduce the
garhage callection overhead from its curment reported level of 496

% = arbage colection s causing some large pauses. The largest pause was 8502 ms. This may affect san i s & concern then a
switch of palicy or reduction in heap size may be helpful,

& The garhage collector tried to allocate fram the pinned free list and failed 17 times. Consider increasing or setting the -Xp command fine parameter {the poluster sizes).

% The garhage callector increasad the heap 15 times. Consider increasing the minimum heap size {with -ms) to swvoid the need for heap expanssons.

1 the number of collections increased by 4,800% in the last third of the log compared ta the middie third, Howewver, the change in the heap usage was 036, which
suggests that an increass in apphcation activty or fragmentation rather than a memany lesk may be the problem. If the workload is not constant then the change in the
frequency of collections may ba nothing to wany about.

I The recommendad command fine is -ms 10241 -m 1500m -XpE2K, 4K SXmant0, 1 -xiaration. 4

Summary
Mean garhage collaction pause (ms) 2385
Praportion of time spent in garbage collection pauses (96) | 4.78
‘Mumber of collections 1730
Langest memory request (bytes) 5224
tean imerval between collections {minues) asa
Fropartion of time spent unpaused (36} 5.2
Allocation fasiure count 1738
Farced collection count a
&C Mode aptthruput
Mean heap unusahbie due to fragmentation {MB) 389
Cancument collection count]
Full callections a
Rate of garhage callsction 213,102 MB/mimAes
Heap size

haaan Minimum | Maximum | Total
heap (MB) | heap (MB) | haap {ME) | heap (ME)
1420 80 1500 zagsTE2

[4]

' age txt|Report| Tabbed data | Line plot| Structured data |

38

Let's move the Java world! ®(GeeCON

What does GC tell you?

High heap occupancy indicates an application
Is likely space bound
— Increase heap size or lower application footprint

If GC i1s using more than 10% or 20% of the CPU
action may be required

— Alternate choice of policy

— GC tuning

Let's move the Java world! GGCCON

IBM Monitoring and Diagnostic Tools
for Java - Health Center

Live monitoring tool with very low overhead
for IBM® Java™ 5.0 and 6.0

— 2.6% overhead against WebSphere benchmark (full
set of data being collected)

Gives insight into how your application is
behaving

Delivers set-up and tuning recommendations
to help avoid application problems

40

Let's move the Java world! GGCCON

How the Health Center works

Agent must be installed into
your JVM and enabled with
a command-line option

XX.COom

~A i
WWW.devc

IBM JVM

' i

Java application
to monitor

Health
Center
agent

Client (installed in the IBM
Support Assistant) makes a
network connection to the

a,cient L//

_—

ISA
Health Center
client
d-ﬂ-*"i_;;
fﬂ_ﬂ'/_p//-\
k“_#

41

Let's move the Java world! GGCCON

com

NWW.Oevoxx.

\
v

Health Center GC monitoring

Visualises heap usage .. =
and garbage

Used heap (after collection) and ... Pause times (not including exclusive acces

® Environment & 400
100 A

collection pause R 4 J

o1}
=]
=

20
8 Locking]

. . | | T
times over time. e N ulk “M |
|dentifies memory — T ——. e R

=l Connection 5 =0 0
5:00 10:00 15:00 5:00 10:00 15:00

le a kS I time [minutes) time {minutes)

time (ms)
[
=
=

heap (MB)

=
[=]
[=}

=

[E Summary 22 =0

I = localhost:1972 | —

Suggests command- 2 Rt |
= Last updated 12:34:34 System (forced) garbage collection count 4

Time spent in garbage collection pauses 2.38%

li n e S a n d tu n i n g | Allocation failure count 264

“ Tuning recommendation 52 = [| Rate of garbage collection 892 MB/minutes
a ra me te rS —/ | Largest memory request 1214 KB
& The application seems to be using |—
Mean garbage collection pause 85.1ms

|some quite large objects. The largest
request which triggered an allocation GC Made Default {optthruput)

S a I I Ie Callurawas tarl 141 Proportion of time spent unpaused 97.6%

@ The mean occupancy is 41%. This Mean interval between collactions 0.06 minutes

recommendation o oo Uy s
logic as GCMV

(4]
[ER |

Let's move the Java world! GGGCON

om

A Ay i ~
WWW.Aevoxx.C

DEMO

Using the Health Center to
check memory usage

Let's move the Java world!

43

GeeCON

Garbage Collection

#¥ Tuning recommendation 2 _

& The application seems to be using some quite

large objects. The largest request which triggered
an allocation failure (and was recorded in the
verbose gc log) was for 647 KB.

& The mean occupancy is 61%. This is close to
optimal, so you do not need to tune your heap size.
@ Heap usage seems to be growing over time. It

increased by 47% in the last third of the log
compared to the middle of the log.However, the
number of collections decreased by 54%. This
indicates that the rate at which your application is
producing garbage seems to be slowing down. This
may mean that your application will reach a steady-
state at which the heap usage will no longer be
increasing.

[l

time (ms)

Pause times (not including exclusive access)

251
209
168 | . .
Used heap (after collection) and Heap size
125 102
£
83.1 84.5
42.4 .
m 68.0
0.0 =
0:00 o 50.8
g I —
£ 33.7 n
L — Heap size—
]
L ’V Used heap (after collection)}—
0.0 } : :
0:00 3:13 6:26 9:38 12:51 16:04 19:17
time (minutes)

| &

Time spent in garbage collection pauses (%) : 0.31
Mean interval between collections (minutes) 0.34
Mean heap unusable due to fragmentation (MB) 0.67

Mean garbage collection pause (ms) 1 62.3

Largest memory request (KB) 647

Rate of garbage collection 74.6 MB/minutes
Mumber of collections 91

Proportion of time spent unpaused (%) 99.7

GC Mode Default (optthruput)

44
Let’s move the Java world! * GeeCON

Check GC performance

What's the problem?
Application throughput, or

responsiveness?

XX.Com

a

[
T summary 2

o

LII"IT'ESpOI"ISiVEI’]ESS

Low mean pause time — GC
probably not the cause of any

N

g

. Mean garbage collection pause (ms) 10.7

Largest memory request (KB) 128

Rate of garbage collection 15646 MB/minutes
Number of collections 3866

Mean interval between collections (minutes) 0.00045

Mean heap unusable due to fragmentation (MB) : 1.37

Time spent in garbage collection pauses (%) 40.1

Proportion of time spent unpaused (%) 59.9

GC Mode Default (optthruput)

High percentage of time
spent paused — 40%...

..but also a high rate of garbage
collection. Do | expect to be
generating this much garbage?

Let's move the Java world!

45

GeeCON

Assessing Footprint
Is the footprint too big?

Let's move the Java world! ‘ GGCCON

Assessing Footprint

Is the footprint too big?

Is the footprint growing?
— Bad bad news

Let's move the Java world! GGGCON

Assessing Footprint

Is the footprint too big?

Is the footprint growing?
— Bad bad news

If left unchecked, a memory leak will eventually
cause a crash

Let's move the Java world! GGCCON

Memory leaks In Java?

Memory leaks happen when objects which are
no longer required still use up memory

Two kinds of memory leak:

— Losing a reference to an object which is no longer
In use

— Holding on to a reference for an object which is no
longer in use

Garbage collection eliminates the first kind, but
not the second

Let's move the Java world! GGCCON

Diagnhosing footprint issues

You need to know what objects are on the
neap

Heap dumps are a record of every object on
the heap

— Automatically produced on OutOfMemoryErrors
— Can be triggered programatically

Extremely useful for problem solving, but
tooling support Is essential

Let's move the Java world! GGCCON

www.devoxx.com

Memory Analyzer

* Open source heap dump analysis
tool

* Wide platform coverage

— HPROF dumps from HotSpot basec _

JVMs
— DTH system dumps from IBM JVM:

— Portable Heap Dumps (PHD) file
from IBM JVMs

* Available from
— www.eclipse.org

Value

= 2B & core20091115
iom % w!_!h@v E{’gv|o\

i overvie w i %,n ;iarﬁinator_hee Il Histogram

.143641.15318.0001 dmp.zip 2%

[Notes 1 | % Navigation History

14

0
u_[e]ECl

— IBM Support Assistant =

Let's move the Java world!

51

GeeCON

http://www.eclipse.org/

Detailed view of heap contents

www.devoxx.com

2\ Inspector i

@ 0xa92a9db0

i Hashtable$Entry[]
H# java.uti

lc] class java.util Hashtable$Entry[] @ Oxa7dag:

= dominator_tree %
Shallow Heap Retained Heap ~ Percentage

& <Regex= =Numeric= =Numeric> <Numeric=
@Sjaua.iangﬂhject _ — — 3
p L org.apache derby.impl.services cache Clock @ 0xa9dc8h38 88 4,579,352 7.83%
8] com ibm oti.vm BootstrapClassLoader @ Ox, .
P N com.sun jmx.mbeanserver. JmxMBeanServer @ 0xa836B8acg 40 736,168 1.26%

112,296 (shallow size)
i b [‘org.eclipse.osgi internal resolver SystemState @ 0x3808d038 2 733,424 1.25%
i 483,160 (retained size)
b LI com.ibm ws.webcontainer.webapp.WebApplmp! @ 0xa8615f8 248 719,864 123%
s No GC root
13 (8] org eclipse osgi.internal baseadaptor DefaultClassLoader @ Ox 96 530,848 0.91%

IR Aributes v [java.util PropertyResourceBundle @ 0xad24e038 483,272 0.83%
L \!lgime |WT‘C" v L java util Properties @ 0xa9242058 '_ 483,208 0.83%
ref [6] null m : - -
ref 7] null =

ref [8] java.util Hashtable$Ent

ref 9] null

ref [10] java.util Hashtable $Ent' 12

(4] Il | 1y el Il B

52
Let’s move the Java world! 'k GeeCON

DEMO

Using the Memory Analyzer to
identify memory consumers

53

Let's move the Java world! GGCCON

Optimizing footprint

Inspect the set of retained objects

— Use dominator tree
— Use histogram

Search for inefficiently used data structures

Look for redundant data
— Use “Group by Value”

54

Let's move the Java world! GGCCON

Don't forget native memory

Java applications use — and may leak - native
memory

Low occupancy Is no guarantee an application
IS not space bound.

Native memory use Is not logged in verbose GC

OutOfMemory errors may occur even though
. there is lots of room in the heap

Let's move the Java world! GGCCON

Tracking native memory usage

Use platform-specific tools
— Windows perfmon tool

— Linux ps

— AIX vmstat

Let's move the Java world! GGGCON

om

[

www.devoxx.

GCMV and native memory

GCMV can
visualize native
memory

Provides

recommendations

&hData set 2 - IBM Support Assistant Workbench
Mative Memory Data Administration Update Views Wi

o Templates I8 SEEET T

® Un-paused Time
G} Petformance
D?Uohiatt Sizes
u_c-'oNatwe Memary
.:a—JMemﬂry

L0 and 504 Sizes
r_vE'CGeneratiunal Heap
.:.g;,Fragmentatlon

@ Compaction Pauses

T Dataset2 73

@ IBM Monitering and Diagnostic Tools...

&00- f——

500

data (ME)

IE_KeyS@ =0

Variants

=—Hrowser_000001.csy

Data

E Reserved address space (v,

[

300

200

100

0.00

0.z0

0.40 0.60 0.60 1.00 1.20 1.40 1.60 1.60 2.00

time {minutes)

> ﬁmwser‘_‘ﬂl‘]ﬁ'ﬁ‘ﬂ‘l‘;cw 'Repnrmi Tah‘he«‘:‘i data | Line p\ﬂt_ S‘l‘:r‘ut‘t‘urat‘ﬂ‘da‘t‘a

() absolute 3 Relative H

Maximum X Yalue

|20

Mirimum 2 Yalue

W Axis
data
e

[
(%2

Online «

Let's move the Java world!

GeeCON

ldentifying native memory contents

What is in the non-heap memory?
— Internal JVM data

— Interned Strings (for some JVMs)

— Classes (for some JVMs)

— NIO direct byte buffers

— Thread data

Difficult to analyze native memory directly
— But ... some of these have wrapper objects in the Java
heap

58

Let's move the Java world! GGCCON

Using Memory Analyzer

Heap dump analysis can be used to identify some
native memory issues

— Are there a lot of Thread objects?

— Are there a lot of NIO direct byte buffers?

59

Let's move the Java world! GGCCON

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
Memory

/0
Synchronization

Let's move the Java world! GGCCON

CPU bound applications

Code is being invoked more than it needs to be
— Easily done with event-driven models

An algorithm is not the most efficient
— Easily done without algorithms research!

Let's move the Java world! GGCCON

Diagnosing CPU bound applications

Fixing CPU bound applications requires
knowledge of what code is being run

— Identify methods which are suitable for optimisation

* Optimising methods which the application doesn't spend
time in is a waste of your time

— Identify methods where more time is being spent than
you expect

* “Why is so much of my profile in calls to this trivial little
method?”

Let's move the Java world! GGCCON

Method trace and profiling

There are two ways to work out what code
your application is doing

— Trace

— Sampling profiling

Let's move the Java world! GGGCON

Method trace

Tracing

— Does not require specialist tools (but Is better
with them)

— Records every invocation of a subset of methods
— Gives Insight into sequence of events
— In the simplest case, System.out.println

— Usually focussed on targeted packages or
methods

Let's move the Java world! GGCCON

Method profiling

Profiling

— Requires specialist tools

— Samples all methods and provides statistics

— Can give a broad picture of application activity

Let's move the Java world! GGCCON

IBM Java method trace

Entry and exit trace for any Java methods
Instrumentation-free, and no extra code required
No fancy GUI, but very very powerful

= Select Command Prompt
CinjPwind2stempsjeluil2dev-28851626>

CinjPwind2stempsjeluil2dev-208510262

Not overhead-free, but C:\jP\uin32\temphje luid2dev-20051026) java ~Strace : ETTENISATTIRUIES HY
lower overhead than mt.4 > HW.main{[Ljava/lang/String; U Compiled
equivalent function
implemented in Java 21:03:40.828 Bx173960 mt.18 { HW.main{[Ljava/lang/String;2U Compiled

static method

CinjPwind2stenpyjeluil2dev-2008510262
CingPwind2ntenphjelwid2dev-20051026
CinjPwind2ntenphjoluild2dev-20051026 >
CinjPwind2ntemphjeluil2dev-28851026>
CiniPwind2stenphje luid2dev-20851026

Let's move the Java world! GGCCON

Controlling what is traced

Can select on package, class or method name:

— Package: methods={java/lang/*}
— Class: methods={java/lang/String.*}
— Method: methods={HelloWorld.main}

Also ! operator and combination allowed:
— methods={java/lang/*java/lang/String*}

Possible to create huge volume of output, so use
sensible method specifications!

Let's move the Java world! GGCCON

Triggering events

Can request certain actions occur when chosen
methods are entered or exited

Actions such as coredump, javadump, etc.

Actions such as enabling more method trace!

Can cause action to occur on n’th instance of
trigger condition

Can specify how many times the action occurs

Let's move the Java world! GGCCON

WWW.OevoxXxX.con

Method profiling with Health Center

Always-on profiling offers
insight into application e S8 s

@ [] Hide low sample entries

. . (2 masses!
a ct IV It @ Environment
Filter methods:

@ Garbage Collection

.o queo Samples Self (%) Self Tree (%) Tree Method B
_.93“ i . |
® I d e nt Ifl e S th e h O tte St & Locking 9 a45 170 W 195 H java.util. Date.normalize() =
1% Profiling & 178 3.2 | 262 0 java.util.Date toString()
L] L] L]
me t h O d S I n a n a llc a t I O n [Reduce profiling overhead 92 1.65 6.69 | java.util.regex Pattern.sequence(jay
90 162 3.2 javalang.ClassLoader defineClasslt
B} Connection 52 =8 80 144 441 | java.lang J9¥Minternals verifylmplije
L] L]
Y F u ll Ca ll Sta C kS to Id e nt Ify ﬂ 79 142 91§ java lang J9VMinternals initialize(jav
i7 138 354 | java.net URLClassLoader findClass(
where methods are bein | o e - - i) jenihngudssindrapoie
i 120 MB received ?
g = Last updated 12:04:17 70 126 187 | java.util. regex Pattern clazz(booleal
59 1.06 2.86 | java.util. regex Pattern$BmpCharPro|
called from and what 5 |
T Profile interpretation 2 = B | @ Invocation paths 2 |45 Called methods | =

methods they call

consuming approximately 17% of the CPU
cycles. It may be a good candidate for

» No bytecode
Instrumentation, no
recompiling

Let's move the Java world! GGCCON

om

a1 Aoy e ~
WWW.Aevoxx.C

DEMO

Using the Health Center
to optimise a code path

Let's move the Java world!

70

GeeCON

Profi

. . . Tree: time spent in
ll N g Se.lf: I SRl this method and
this method methods it called

code is hottest
A

profiler shows which Java

Samples Self (%) Self Tree (%) Tree Method ‘*
638 45,5 52,0 W tectApplicationSink. put{I) |
439 32,2 35.4 - testApplicationSink. get()
106 7.7z B 7.7/ m testApplicationSink. createlargeChije
. 27 1.98 | 1.98 | java.lang. Thread.sleep(1I)
Low-overhead samp[mg 23 1.69 | 1.69 | java.lang.String.lastindexOF(II)

)

|l & Irvocation paths 52 | Called methods
Methods that call testapplicationSink. put)
4 () testapplicationSink. put
€ testapplicationFil.run {29,6%)
() testapplicationSink.put (0,412y) WEthods called by testApplicationSink, put()

4 Dig deeper into the data to
see why a method is being
caled

g

Invocation paths [Rer ke e

a () testapplicationSink. put | \

@) testapplicationsink, createlargeCbiects (3,46%) See Wthh COde
a (I Thread.sleep (1,39%)
@ Thread.seep (100%) branches are run most

() testapplicationSink.put {0, 42%)

often

g

71

Let's move the Java world! GGCCON

VOXX.COM

.
ue

VAT AAS
NWW.,

ldentify a problem method

Do any methods stand out v samples

633

as particularly hot? -

233
231

223
218
124
115

Do | expect my application to be
primarily doing regex pattern
compilation?

g

Methods that call java.util.regex.Pattern.compile()
= (@ Pattern.compile
= @ Pattemn.<init> (50.2%)
[@ FollowerCount.findScreenName (55.0%)
P @ Pattern.compile (45.0%)
= (@ Pattern.compile (49.8%)
= (@ FollowerCount.findScreenName (100%)
P @ FollowerCount.getFollowers (100%)

Self () Self
212
9.73 i
7.82'H
775 W
7.49- W
7.32°H
4.16 0
3.86 1

Tree (%) Tree | Method

60.6 N
13.2:0
16.8 1
7751
28.1
8.76 |
5.54 |
5.14

 java.utilregex. Pattern.compile()

java.io.BufferedReader.readLine(Z)
java.util.regex.Pattern.atom()
java.util.regex.Pattem. newSlice([lIZ)
java.util.regex.Pattem.sequence{Ljava.util.r
java.util.regex.Pattern$Node.study(Ljava.uti
java.util.regex.Matcher, <init>{Ljava.util.reg
java.util.regex.PatterngCurly.matcho{Ljava..

Need to either make
Pattern.compile() more
efficient or call it less

Which methods are calling
Pattern.compile? Could | optimize to
call Pattern.compile less?

72

Let's move the Java world! GGCCON

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
Memory
CPU

Synchronization

Let's move the Java world! GGCCON

Diagnosing I/O-bound applications

A number of tools may be required to isolate
the causes of I/0O delays

Use the GC and Memory Visualizer to check

sweep times

— Sweep times should be very short

— Long sweep times indicate access to memory Is
slow (paging)

Use method trace to trace calls to network and
disk 1/0

74

Let's move the Java world! GGCCON

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
Memory
CPU
/0

Let's move the Java world! GGCCON

Concurrency and performance

Hardware speed is being achieved by scaling out
iInstead of up

Getting performance gains from multicore
systems 1s hard

Concurrency Is next great challenge in software
engineering
— Designing for concurrency is hard

— Threads need to synchronize with each other to have a
chance of application correctness

Let's move the Java world! GGCCON

Concurrency and performance (ii)

Synchronization has a performance cost
— Effectively makes execution single-core

This cost goes up with the number of cores

— Synchronization needs to be a lot smarter on huge
systems

— At some point synchronization becomes the main
performance bottleneck

Even on two-core systems, locking can be a big
performance cost

Let's move the Java world! GGCCON

Diagnosing lock bound applications

Poor synchronization can cause significant
application delays

IBM provides tooling to quickly diagnose and
identify contended locks

— Health Center provides information on locks used
In Java applications and the JVM

78

Let's move the Java world! GGCCON

~om

~

www.devoxx.

Lock analysis

— Always-on lock Baa

Inflated Java Monitors

© Classes @
L] L]
m O n Ito r I n g @® Cnvironment & Slow (height) and % miss (color)
= T F 3 % 8 3] I ¥ & 8 - ¢ & %
[l Garbage Collection i 70 3 i % % % % 3% = 3 g i3 g
. . qBH : @ ;:35:6:¢13::83¢5¢
& Locking 9 co R B B ¢ 3 ¥ & & © & i & % 3 i3 F 3 2
— Quickly allows the | e || IESEEERERRRRREEE
1% Profilin & 9 B 2 3 0§ | 8 2 8 § i 8§ 3 %
S 2 I I T EEEEEEEE B EEEEEE
Bl BB i 3 : 2 § £ ¢ s E e
[[] Reduce profiling overhead f‘. 40 j j g E é 2 g 2 g 2 g g ; ‘E i %! S g
usage of all of locks M ||| INERERRREERERRRR
= - - BE f B B8 Bl $ 3 0§ 0§ o§o§oy & E I
T4 Connection ¥ o S HHEBHE 8 BB S
. =B 3 i Rz : § o2 § 2 § ¢ i & %
Q E £ 5 a = El E £l s £ H g @ K = £ m
to be profiled | S LIELLLITT I ER R
) BER:R:R:R:R 0000 I 2 0§ =g 9 37
= localhost:1972 BN Bl Bl R = 2 2 i g 2
:"’_‘# 119 MB received 5 B B Ed R .g.. g g g o E 0z ;.. g g i 2

. I d e n tifie S lo C kS Last updated 11.54:47 — I

2 Monitors v =0

L]) .
Wh IC h I I I Ight b e [Inflated Java monitors analysis 22 = I-r[ﬂateajaval\jaﬂﬁors

@ nNo problems detected. = % miss Get Recursive % util Average hold time Name |
. 0 2017 7 0 0 17340 [A1CBB7AS
p reve ntl n g th e 0 5044 7 0 0 18041 [9E3BD2E4]
0 1541 7 0 0 16607 [AlCBB?ABE
a licati O n fro m 0 3918 5 0 0 16600 [9E3BD2E4] s
p p & @]] Dl

scaling

Let's move the Java world! ‘ GGCCON

Identify lock contention .

@mge or red colour

5

S aStore@ORGF 4840

indicates most of the
attempts to synchronize
were blocked)

Tatal Slew lock count (number)

[424€8634] com/ibm/java Hiagnostics Aestppl cation/Datastor @O]
L EHCEE34] comjfibm/fjava diagnostics testApplication/D ataStore@D0ADGOCD
E:‘?:QEBEE?QU] com/ibmfjavadiagnostics testhpplication/D ataStore@ 008 DG0AS
[4232AB58] sunimisc/GCHLatencylock@00905408 (Object)
[4232AB58] sunfmisc/GCLatencyLock@00905648 (Ohject)

[42328E4C] javalangrefReferenceQuenemOndF 2000 (Object)
[42320E4C] javaflangfrefReferanceQueue@ONIEIFCE (Ohject)

[42324FaC] [I@00401BCO (Object)
[42324FaC] [L00A D248 (Object)
[424CE900] [HDO0SFEG10 (Ohject)

Luvi)
£

High average hold time
indicates we're holding the
lock a long time — doing too
much work In it?

Maonior

Tall bar indicates a large
number of requests were
blocked

T —————
fnfiated dava Monitors N
% miss Gets Slow Recursive %util Average hold time = Mame
2] 218 532 i 40 122759063 [42328290] comjibmjava/diagnostics/testapplication/DataStore @O0SF4540 {Object)
73 894 g49 0 45 143579982 [424CE634] com/ibm/iava /dizagnostics ftestApplication/DataStore @OOSF 4358 (Ohject)
0 364 0 0 0 423770 [4232AF9C] [L@00ADIBCD (Object)
45 119 55] 15 27439641 [424C8634] com/ibmfjava/diagnostics ftestapplication/DataStore @00A0E0CO {Object)
39 g5 37 0 f 14664944 [4232B290] com/ibmjava/dizgnostics ftestapplicationDataStore @I0ANE0AS (Object)
|| 0 42 0 0 a 53090 [4232AF9C] [1@00A1D2AS (Object)
el - Fal . ol ATy FamAaAarRaT Traaammrms 4o el o ol

80

Let's move the Java world! GGGCON

Performance — why it's actually cool and fun
Performance tuning techniques

Tools for identifying bottlenecks
Memory
CPU
/0
Synchronization

Let's move the Java world! GGCCON

So ...

You have a performance problem ...

You diagnose and fix it.

Let's move the Java world! GGCCON

WO XXOASP'MMM

5
Q
0
Q
O

Conclusions

Improving application performance starts with
identifying limited resources

Tools can help fix performance bottlenecks

— Space bound
* GC and Memory Visualizer/Health Center
* Memory Analyzer

— CPU bound
* Health Center

— Lock bound
* Health Center

Let's move the Java world! GGCCON

Where to find more information

— IBM Support Assistant
* http://www-01.ilbm.com/software/support/isa/

— IBM Monitoring and Diagnostic Tools for Java
- www.ilbm.com/developerworks/java/jdk/tools/

— Health Center YouTube videos

 http://www.youtube.com/watch?v=5TcktclOgxs (overview)
* http://www.youtube.com/watch?v=6WJESUOjvEk (client install)
* http://www.youtube.com/watch?v=HdpOm]J13NLQ (agent install)

Health Center Forum

— http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461

Email javatool@uk.ibm.com

85

Let's move the Java world! GGCCON

The following terms are trademarks of International Business
Machines Corporation in the United States, other countries, or
both:

— IBM

— z/0S

— PowerPC

— WebSphere

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Solaris is a trademark of Sun Microsystems, Inc.

Intel is a trademarks of Intel Corporation or its subsidiaries in
the United States, other countries, or both

Let's move the Java world! GGCCON

www.devoxx.com

Any Questions?

Let's move the Java world!

87

1 GeeCON

