
Amsterdam | April 2 - 3, 2019

Monitoring OVH: 300k servers, 28 DCs... and one Metrics platform

Horacio Gonzalez

@LostInBrittany

Who are we?

Introducing myself and introducing OVH

Horacio Gonzalez

@LostInBrittany

MOVH

Team DevRel

Spaniard lost in Brittany, developer, dreamer and all-around geek

OVH: Key Figures

- 1.3M Customers worldwide in 138 Countries
- 1.5 Billions euros investment over five years
- 28 Datacenters (growing)
- 350k Dedicated Servers
- **200k** Private cloud VMs running
- 650k Public cloud Instances created in a month
- **20TB** bandwidth capacity
- **35** Points of presence
- **4TB** Anti DDoS capacity

Hosting capacity: 1.3M Physical Servers

+ 2 500 Employees in 19 countries 18 Years of Innovation

OVH: A Global Leader on Cloud

200k Private cloud VMs running

Dedicated IaaS Europe

•	•••	• •••	• •••	• •••	• •••
•	•••	• •••	• •••	• •••	• •••
•	•••	• •••	• •••	• •••	• •••
•	•••	• •••	• •••	• •••	
•	•••	• •••	• •••	• •••	• •••
•	•••	• • • •		• •••	• •••
•	•••	• •••		• •••	• •••

Hosting capacity:

1.3M Physical
Servers

360k Servers already deployed

> 1.3M Customers in 138 Countries

Ranking & Recognition

1st European Cloud Provider*

1st Hosting provider in Europe

1st Provider Microsoft Exchange

Certified vCloud Datacenter

Certified Kubernetes platform (CNCF)

Vmware Global Service Provider 2013-2016

Veeam Best Cloud Partner of the year (2018)



OVH: Our solutions

Once upon a time...

Because I love telling tales

This talk is about a tale...

A true one nevertheless

And as in most tales

It begins with a mission

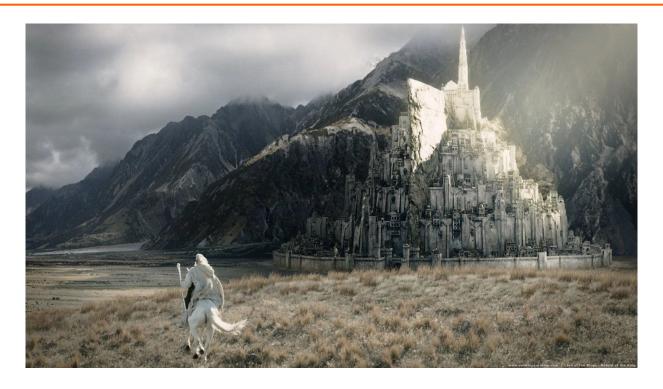
And a band of heroes

Engulfed into the adventure

They fight against mishaps

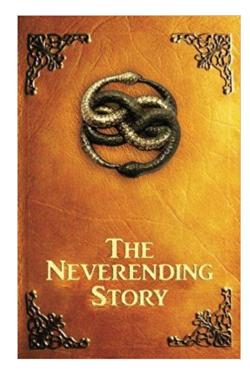
And all kind of foes

They build mighty fortresses



Pushing the limits of possible

And defend them day after day



Against all odds

But we don't know yet the end

Because this tale isn't finished yet

It begins with a mission

Build a metrics platform for OVH

To make better **decisions** by using **numbers**

We want our **code** to add **value**

We need to make better **decisions** about our **code**

Code adds **value** when it **runs** not when we write it

We need to know what our code does when it runs

We can't do this unless we **measure** it

We have a **mental model** of what our code **does**

This representation can be wrong

We can't **know** until we **measure** it

"The app is slow." - User

"The app is slow." - User
"The page takes 500ms!" - Ops

?

SQL Query?

Template Rendering?

Session Storage?

We don't know

With observability:

SQL Query.....53ms

Template Rendering......1ms

Session Storage......315ms

With observability:

SQL Query.....53ms

Template Rendering......1ms

Session Storage.....315ms

We improve our mental model by **measuring** what our code **does**

We use our **mental model** to **decide** what to do

A better **mental model** makes us better at **deciding** what to do

Better **decisions** makes us better at generating **value**

Measuring make your App better

It began with a mission

Build a **metrics** platform for **OVH**

A metrics platform for OVH

For all OVH

Building OVH Metrics

One Platform to unify them all, One Platform to find them, One Platform to bring them all and in the Metrics monitor them

What is OVH Metrics?

Managed Cloud Platform for Time Series

OVH monitoring story

We had lots of partial solutions...

OVH monitoring story

One Platform to unify them all

What should we build it on?

OVH monitoring story

Including a really big

OpenTSDB drawbacks

OpenTSDB RowKey Design

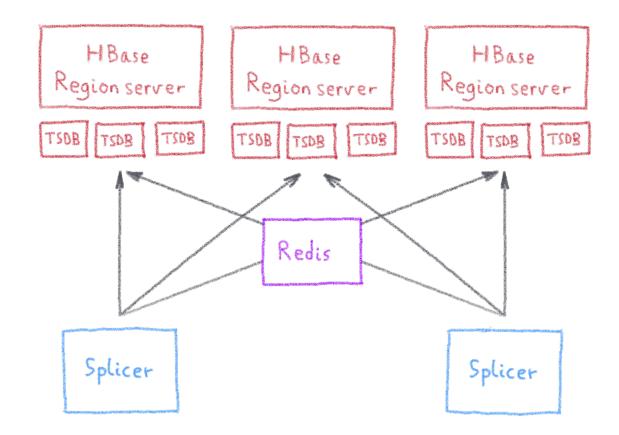
metrics timestamp tagk1 tagv1 tagk2 tagv2

OpenTSDB Rowkey design flaws

- .*regex.* => full table scans
- High cardinality issues (Query latencies)

We needed something able to manage **hundreds of millions** time series

OpenTSBD didn't **scale** for us



OpenTSDB other flaws

- Compaction (or append writes)
- /api/query: 1 endpoint per function?
- Asynchronous
- Unauthenticated
- ...

Scaling OpenTSDB

Metrics needs

First **need**:

To be **massively** scalable

Analytics is the key to success

Fetching data is only the tip of the iceberg

Analysing metrics data

To be scalable, analysis must be done in the database, not in user's computer

Metrics needs

Second **need**:

To have rich query capabilities

Enter Warp 10...

Open-source Time series Database

More than a Time Series DB

Warp 10 is a software platform that

- Ingests and stores time series
- Manipulates and analyzes time series

Manipulating Time Series with Warp 10

A true Time Series analysis toolbox

Hundreds of functions

Manipulation frameworks

Analysis workflow

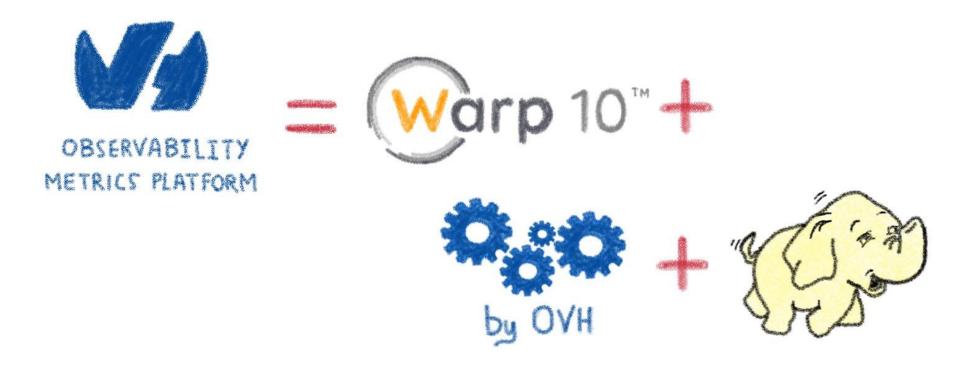
Manipulating Time Series with Warp 10

A Time Series manipulation language

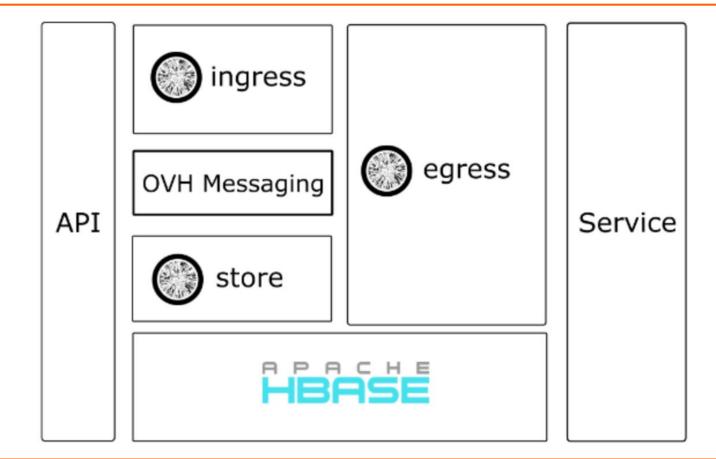
Did you say scalability?

From the smallest to the largest...

More Warp 10 goodness


- Secured & multi tenant
- In memory Index
- No cardinality issues
- Lockfree ingestion
- WarpScript Query Language
- Support more data types

- Synchronous (transactions)
- Better Performance
- Better Scalability
- Versatile (standalone, distributed)


OVH Observability Metrics Platform

Metrics Data Platform

Building an ecosystem

From Warp 10 to OVH Metrics

Multi-protocol

Why to choose? We need them all!

Why choose? Let's support all of them!

Metrics Platform

Query your data using any language among WarpScript,

OpenTSDB, Prometheus and Graphite
Visualize with Grafana

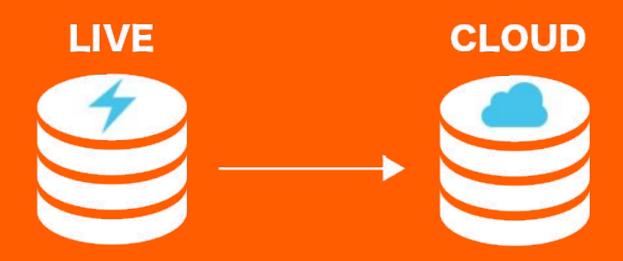
{cobemotion}

smart automation platform

Metrics Platform

```
graphite
            influx
https://
                        .<region>.metrics.ovh.net
          opentsdb
         prometheus
           warp10
```


Metrics Live


In-memory, high-performance Metrics instances

In-memory: Metrics live

+120 million of writes/s

In-memory: Metrics live

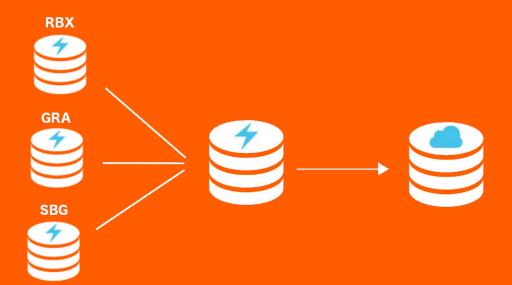
CLOUD Persistent & Performant

- Rollups
- AggregationsBlazing fast queries

- Historical datas

In-memory: Metrics live

STAGE 1


Short retention - hours Fine grained monitoring Raw data

STAGE 2

Short retention - days
Consolidated aggregations
Global infra monitoring

STAGE 3

Customer metrics
Historical datas

Monitoring is only the beginning

OVH Metrics answer to many other use cases

Use cases families

- Billing (e.g. bill on monthly max consumption)
- Monitoring (APM, infrastructure, appliances,...)
- IoT _____(Manage devices, operator integration, ...)
- Geo Location (Manage localized fleets)

Use cases

- DC Temperature/Elec/Cooling map
- Pay as you go billing (PCI/IPLB)
- GSCAN
- Monitoring
- ML Model scoring (Anti-Fraude)
- Pattern Detection for medical applications

SREing Metrics

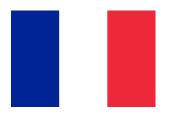
With a great power comes a great responsibility

432 000 000 000 datapoints / day

10 Tb / day

5 000 000 dp/s

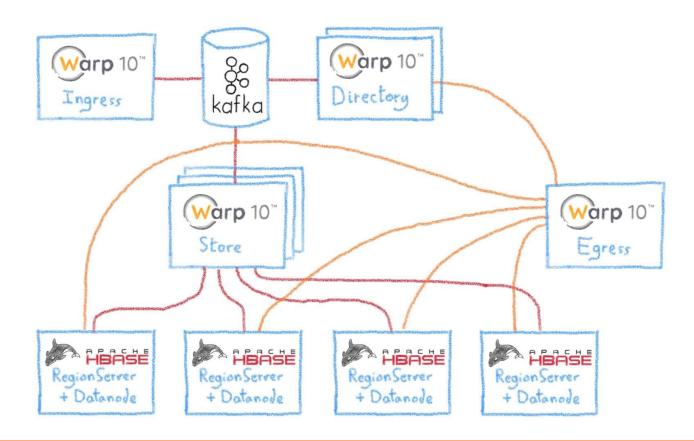
500 000 000 series



Our clusters size

GRA:

- 150 nodes
- 2 PB
- 1.1 Gbps


BHS:

- 30 nodes
- 400 TB
- 120 Mbps

Our cluster architecture

Detecting errors

Before it's too late

Extract errors from logs

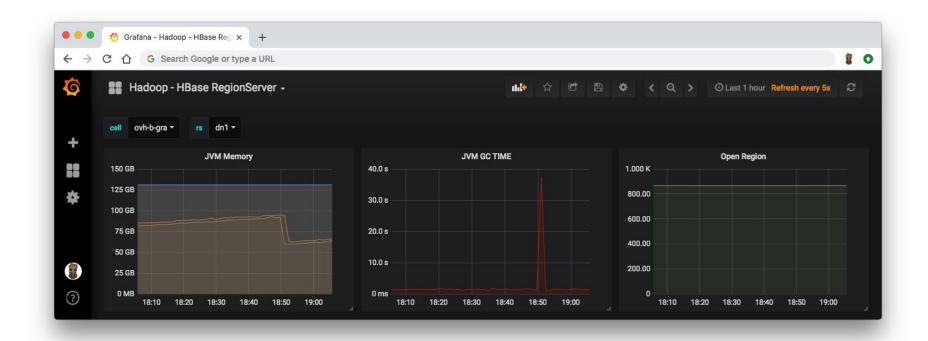
```
netrics@GW_B-GRA: ~/ansible/ansible-hadoop (ssh)

root@dn-1.hadoop.B.GRA: ~# cat /var/log/hbase/hbase-hbase-regionserver-dn-1.hadoop.B.GRA.infra.metrics.ovh.net.log.1 | grep FATAL

2018-09-04 00:56:49,604 FATAL [regionserver/dn-1.hadoop.B.GRA.infra.metrics.ovh.net/10.0.0.1:16020.logRoller] regionserver.HRegionServer: ABORTING region server dn-1.hadoop.b.gra.infra.metrics.ovh.net,16020,1530281936345: Failed log close in log roller

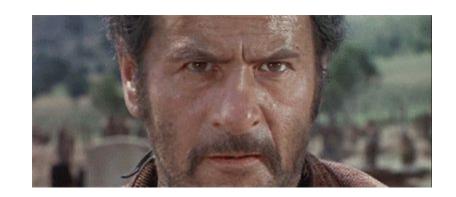
2018-09-04 00:56:49,604 FATAL [regionserver/dn-1.hadoop.B.GRA.infra.metrics.ovh.net/10.0.0.1:16020.logRoller] regionserver.HRegionServer: RegionServer abort: loaded coprocessors are: [org.apache.hadoop.hbase.coprocessor.example.BulkDeleteEndpoint]

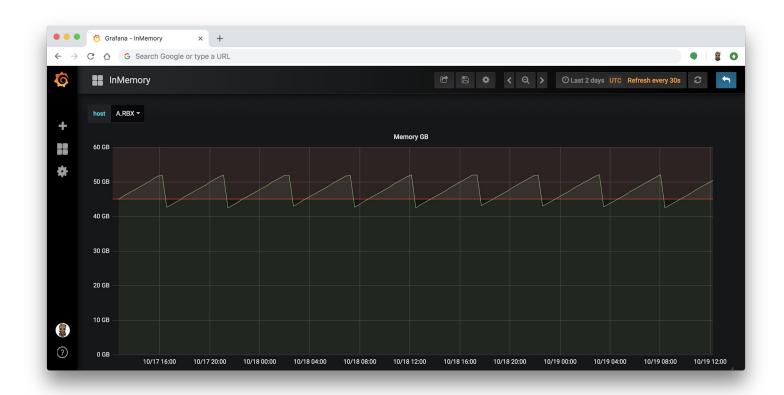
root@dn-1.hadoop.B.GRA: ~# |
```



Tailor

Forward logs and extract metrics!

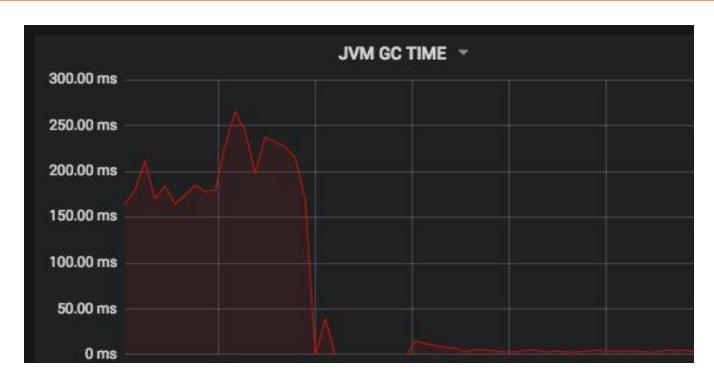
Monitoring the JVM


Documentation

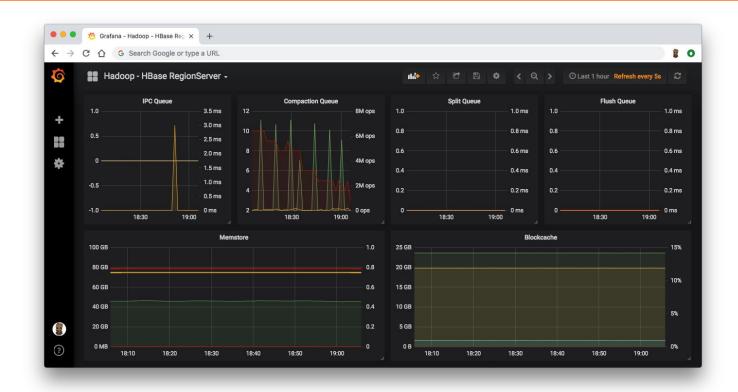

JVM GC

The good, the bad and the ugly

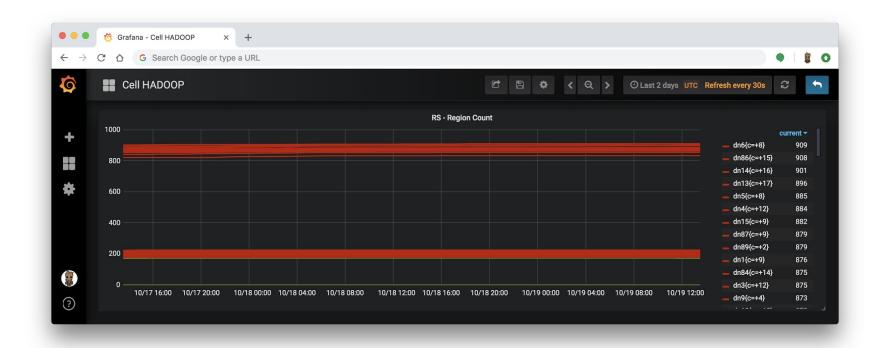
The good

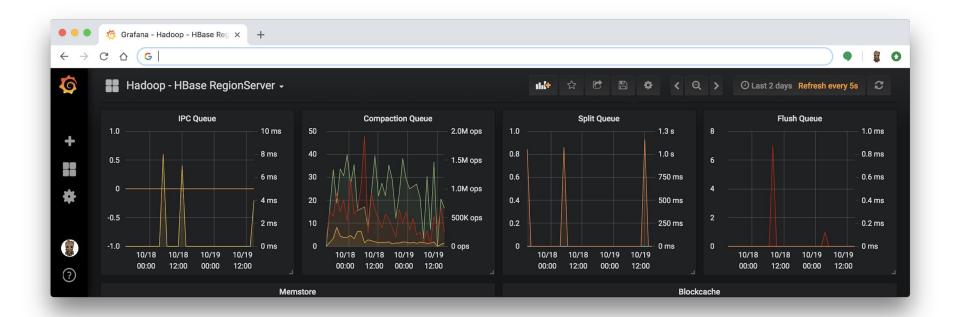

The bad

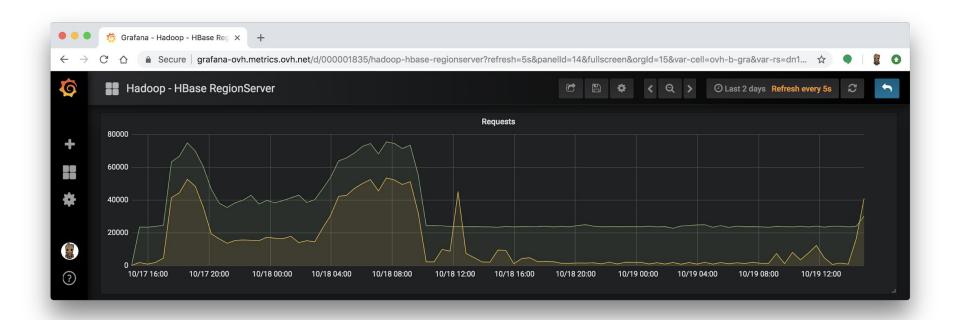
... and the ugly

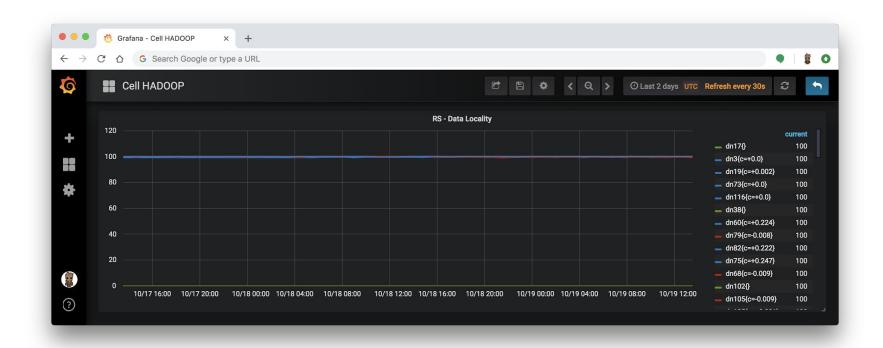


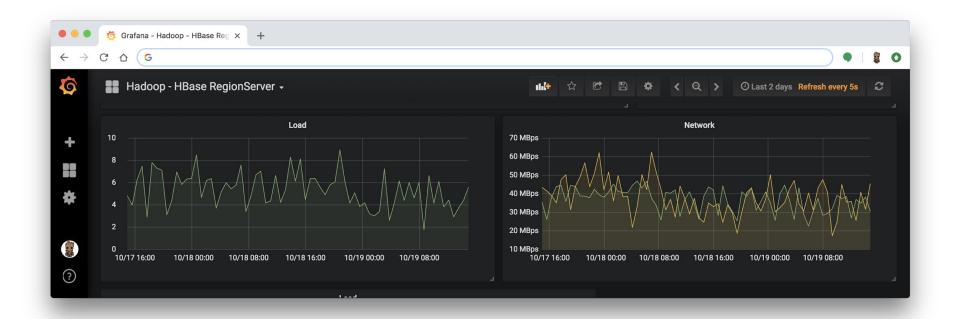
#java #jdk11 #zgc


Monitoring HBase

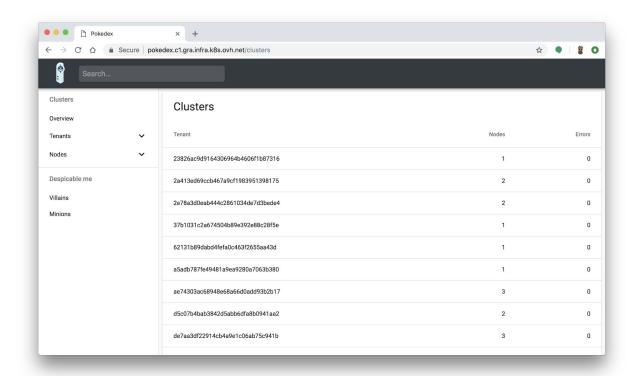

Number of open regions


Queues length

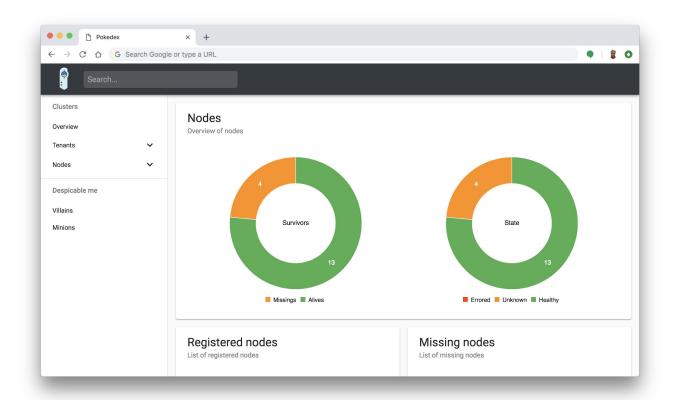

Number of read and write requests

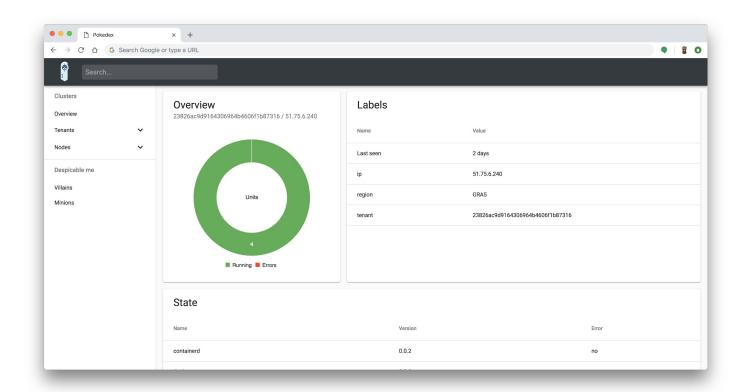

Preserve data locality

Host health


Pokédex

Inventory all animals.


Merging all data sources


Global visualization

Correlate information

Sacha

The best tamer

An awesome CLI

```
1. metrics@GW_B-GRA: ~/ansible/ansible-hadoop (ssh)
root@nn-1.hadoop.B.GRA:/opt/hbase# ./sacha --help
Sacha - Hadoop management tool
Usage:
  sacha [flags]
  sacha [command]
Available Commands:
               HBase sub commands
  hbase
  help
               Help about any command
Flags:
       --config string config file to use
--help help for sacha
  -h, --help ¯
  -h, --help help for sacha
-v, --log-level int Log level (from 1 to 5) (default 4)
Use "sacha [command] --help" for more information about a command.
root@nn-1.hadoop.B.GRA:/opt/hbase#
```


Retrieving bare informations

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase servers
INFO[0005] dn-85 |
                   dn-85.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630297124
INFO[0005] dn-117
                    dn-117.hadoop.b.gra.infra.metrics.ovh.net,16020,1533841829550
INFO[0005] dn-100
                   dn-100.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630307303
                  dn-9.hadoop.b.gra.infra.metrics.ovh.net,16020,1526331102574
INF0[0005] dn-9 |
INF0[0005] dn-70 |
                   dn-70.hadoop.b.gra.infra.metrics.ovh.net,16020,1532638465829
INFO[0005] dn-115 | dn-115.hadoop.b.gra.infra.metrics.ovh.net,16020,1533841825648
                   dn-78.hadoop.b.gra.infra.metrics.ovh.net,16020,1530891364037
INFO[0005] dn-78 |
                   dn-10.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536630281903
INF0[0005] dn-10 |
INFO[0005] dn-119 | dn-119.hadoop.b.gra.infra.metrics.ovh.net,16020,1535986042437
INFO[0005] dn-91
                   dn-91.hadoop.b.gra.infra.metrics.ovh.net,16020,1527788063219
INFO[0005] dn-61
                   dn-61.hadoop.b.gra.infra.metrics.ovh.net,16020,1533642514028
INF0[0005] dn-16
                   dn-16.hadoop.B.GRA.infra.metrics.ovh.net,16020,1537799642390
INF0[0005] dn-83
                   dn-83.hadoop.b.gra.infra.metrics.ovh.net,16020,1532707632810
INF0[0005] dn-96
                   dn-96.hadoop.b.gra.infra.metrics.ovh.net,16020,1528715633446
INFO[0005] dn-64
                   dn-64.hadoop.b.gra.infra.metrics.ovh.net,16020,1533644687916
INFO[0005] dn-93
                   dn-93.hadoop.B.GRA.infra.metrics.ovh.net,16020,1537277470529
INFO[0005] dn-113
                   dn-113.hadoop.b.gra.infra.metrics.ovh.net,16020,1533834504553
INFO[0005] dn-28 |
                   dn-28.hadoop.b.gra.infra.metrics.ovh.net,16020,1521767880632
INF0[0005] dn-43
                   dn-43.hadoop.B.GRA.infra.metrics.ovh.net,16020,1536747014896
INFO[0005] dn-48
                   dn-48.hadoop.b.gra.infra.metrics.ovh.net,16020,1526494308594
INF0[0005] dn-12
                   dn-12.hadoop.B.GRA.infra.metrics.ovh.net,16020,1539066910343
INFO[0005] dn-95
                   dn-95.hadoop.b.gra.infra.metrics.ovh.net,16020,1530315838140
```


Create region map

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase regions
INFO[0021] dn-10 | cdde4aebd3e9c150624089fb447708e6
                                                         M\x09\x9E\x9BbD\x09!*\xC6\x03\x08 | 485
1 | 857968394 | 1.000000
INFO[0021] dn-2 | b46388051bcf3c216711d8e509c3f824
                                                     M\x09\x9E\x9BbD\x09!*\xC6\x03\x08 | M\x1FG\
xAD!\xA8j\xD7\x9B\x16\x92\xA4 | 4395 | 523983078 |
                                                   1.000000
INFO[0021] dn-2 | f3529226e9f21322467a67c00a1e1101
                                                     M\x1FG\xAD!\xA8j\xD7\x9B\x16\x92\xA4 \mid M\x1
FG\xAD!\xA8j\xD7\x9B\xC1||\x08 | 4140 | 50978108
                                                    1.000000
INFO[0021] dn-128 | 77d08e6ea1a3302d9c83ed6bd8e8cd1f
                                                       M\x1FG\xAD!\xA8j\xD7\x9B\xC1||\x08|
xA87=\x9D\xB4\x15\x09\x98\xB9 | 7757 | 975843446
                                                    1.000000
INFO[0021] dn-10 | 5cf97e64c30c53ff7395344ecd8a00fa
                                                      M0e\xA87=\x9D\xB4\x15\x09\x98\xB9 | M1\x1E
x85\xD0\xF6\xDB@ = B + 4723 + 914385324 + 1.000000
INFO[0021] dn-3 | 2eade822f20dee70fbd728deba94ca7b
                                                     M1\x1E\x85\xD0\xF6\xDB@ =B \mid M1\x1E\x85\xD0
\xF6\xDB@ \xE6\x02N | 3231 | 47080095 | 1.000000
INFO[0021] dn-10 | 0bc668153aab5b827db02285c520481e |
                                                      M1\x1E\x85\xD0\xF6\xDB@ \xE6\x02N | M;\x9A
\x05\x0F\x0AJ\x15\x0Ek$? | 5014 | 381914734 | 1.000000
INFO[0021] dn-10 | dc37a88543daa6a80300b971743e08e0 |
                                                      M; x9Ax05x0Fx0AJx15x0Ek$? | MAwxF8x
DD\xFC\xE0\x9E)A\xD8 | 4119 | 300357457 | 1.000000
INFO[0021] dn-2
                  7ba1b7697aefa6282aa462f8f5188dc5
                                                     MAw\xF8\xDD\xFC\xE0\x9E)A\xD8 | MQm\xFD | 8
960 | 322459571
                  1.000000
INF0[0021] dn-2
                  4456926a9478ea8aed08921767dba5d7 |
                                                     MQm\xFD | Mx\xED\xC3\xBC\xA0\xD3-1\xCD\x84\
            741383347 | 1.000000
```


Move region to another region server

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase --regions regions.json move dn-103 dn-103
```


Drain regions of the region server

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase drain --regions regions.json dn-88
```


Managing multiple hardware profiles

```
( policy.json × Settings
                                                                                                                         <u>@</u> ■
   Users ▶ fdubois ▶ Desktop ▶ (+) policy.json ▶ {}1
               "name": "8 core",
               "count": 172,
               "rsCount": 19,
               "rs": ["dn-16","dn-17","dn-20","dn-21","dn-23","dn-24","dn-25","dn-26",
               "dn-28", "dn-30", "dn-31", "dn-32", "dn-35", "dn-36", "dn-37", "dn-38", "dn-39",
               "dn-75", "dn-81"]
               "name": "12 core",
      10
               "count": 180.
               "rsCount": 43,
               "rs": ["dn-19", "dn-22", "dn-27", "dn-33", "dn-34", "dn-40", "dn-42", "dn-43",
               "dn-44", "dn-45", "dn-46", "dn-47", "dn-48", "dn-50", "dn-51", "dn-52", "dn-53",
               "dn-55", "dn-56", "dn-57", "dn-59", "dn-60", "dn-62", "dn-64", "dn-65", "dn-66",
               "dn-68", "dn-69", "dn-70", "dn-71", "dn-72", "dn-73", "dn-74", "dn-80", "dn-82",
               "dn-83", "dn-73", "dn-91", "dn-92", "dn-93", "dn-94", "dn-95", "dn-96"]
P master ♡ ⊗ 0 ∧ 0
                                                                                               Zen Ln 10, Col 18 Spaces: 2 UTF-8 LF JSON 😀 🔔 1
```


@LostInBrittany

Balance the cluster

```
1. hbase@nn-1: /opt/hbase (ssh)
hbase@nn-1:/opt/hbase$ ./sacha hbase balance --policy policy.json --regions regions.json
```


Conclusion

That's all folks!

