

Managing your Red Hat Enterprise Linux guests with RHN Satellite

Brad Hinson: Sr. Support Engineer Lead on System z, Red Hat Shawn Wells: Lead, Linux on System z, Red Hat

Red Hat Network

- Red Hat's modular, Web-based Linux management platform
 - Highly scalable solution
 - Integrates with existing platforms
- Modular approach
 - Updates Management Provisioning Monitoring

What is Red Hat Network?

A systems management platform designed to provide complete lifecycle management of the operating system and applications.

- A single solution for lifecycle management of compute resources
 - Installing and provisioning new system
 - Updating systems
 - Managing configuration files
 - Monitoring performance
 - Redeploying for a new purpose

Why use Red Hat Network?

Red Hat Network makes Linux:

Deployable

Provision thousands of machines at once without touching them

Scalable

Expand IS/IT capabilities without expanding resources

Manageable

Update 1,000 systems as easily as 1

Consistent

 Ensure that security fixes and configuration changes are applied across your organization

Benefits of Red Hat Network

Lower system administration costs

- Management tools let you maximize your hardware investment
- Complete installation takes only minutes (Hosted) to 1-2 days (Satellite)

Increase productivity

- 4-10X system admin productivity, easily allowing 150+ systems/system admin
- Flexible architecture allows use of GUI, API, or CLI (scripted) interface
- All tasks automated allowing you to move beyond "guru bottleneck"

Improve security

- Content stream comes directly & immediately from Red Hat
- Complete audit trail and various predefined reports
- Policies and permissions provide centrally managed role-based administration

Example: Using Red Hat Network for adaptive infrastructure

Many enterprises want to use hardware more efficiently

- Demand for externally-facing services often shifts. In order to adapt to changing demand conditions, administrators need flexible systems
- It can take hours to manually re-deploy a single system.

Detect when demand increases

- Red Hat Network can alert you when systems or applications reach defined levels of performance
- Allows vou to take action before customers notice performance degradation

Re-deploy systems quickly

- Red Hat Network stores profiles that can include packages, custom applications, configuration files, and more
- Use the profiles to change under-utilized systems to the type of system needed to meet current business needs
- In 20-30 minutes, you can have hundreds of systems re-deployed

Red Hat Network components

Service Modules

- Update
- Management
- Provisioning
- Monitoring

Architectures

- Hosted
- Satellite

Update Module

Easily obtain security updates, patches, and new OS versions

Automatically update systems with the latest security fixes

- Included in every Enterprise Linux subscription
- All content is digitally signed for added security
- Full dependency checking ensures the integrity of your system

Management Module

Manage groups of systems as easily as a single system

Assign permissions to administrators for managing different groups or roles

Schedule updates to occur during maintenance windows

- Powerful search capabilities let you identify systems based on packages, system information, and much more
- Compare package profiles between systems to quickly spot differences
- Manage both Enterprise Linux and Solaris systems within the same RHN interface

Provisioning Module

Provision existing or bare metal systems using predetermined profiles or system cloning

- Use Provisioning to deploy Enterprise Linux, other applications, and customized configuration files
- Kickstart writer lets you quickly create templates used for provisioning
- Issue remote commands to perform additional pre- and post-install instructions

Monitoring Module

Dozens of lowimpact probes can be set for each system Group probes into suites for fast deployment

- Monitor systems, as well as applications from Oracle, BEA, Apache, and MySQL
- View reports and graphs of probe performance over time
- Temporarily disable notifications helpful when performing system maintenance
- Monitoring Module requires a Satellite deployment model

What can be monitored?

System Probes

Linux: CPU Usage, Disk I/O Throughput, Disk Usage, Interface Traffic, Load, Memory Usage, Process Health, ...

Network: FTP, HTTP, HTTPS, IMAP, Ping, POP, RPCService, SSH, SMTP, ...

Log Agent: Log Size, Pattern Matching, ...

Application Probes

- Oracle 8i/9i: Availability, Client Connectivity, Disk Sort Ratio, Index Extents, Locks, Sessions, Tablespace Usage, TNS Ping, ...
- BEA Weblogic: Heap Free, JDBC Connection Pool, Server State, ...
- Apache: Processes, Traffic, Uptime
- MySQL: Database Accessibility, Opened Tables, Query Rate, Threads Running

You can also create your own probes using tools provided through Red Hat Network.

Hosted deployment model

- Quick setup is designed to enable management for small deployments
- All system information, profiles, and packages are stored in Red Hat's servers
- Each managed system connects across the Internet for all managed actions
- RHN Proxy can be added to lower bandwidth use by caching packages locally

Satellite deployment model

- Enterprise management solution enhanced control
- Local database stores all packages, profiles, and system information
- Syncs content from RHN Hosted
- Custom content distribution
- Can run disconnected from the Internet

Why use a Satellite Server?

Improved performance

- Systems connect to Satellite instead of each downloading content from Red Hat
- Satellite syncs with Red Hat to get the latest packages and errata
- Embedded Oracle database scales to thousands of connected systems

Better control

- Satellite can run disconnected from the Internet for maximum security
- Use custom channels to distribute in-house or 3rd party content
- Build around your processes create cloned channels for staged environments

Advanced functionality

- Monitoring and Solaris Management only available to Satellite users
- Satellite enables kickstarts with Provisioning Module
- Kickstart trees integrated into package repository for easy provisioning
- Store and deploy configuration files from the Satellite to improve consistency

Satellite terms to understand

- Channel: A list of software packages. There are two types of channels (base, child).
- Organization Administrator: User role with highest level of control. This user can add users, systems, and system groups.
- Channel Administrator: This user can create/clone/modify software channels.
- Red Hat Update Agent: Client application that connects to RHN/Satellite.

How it Works

Database

Your existing database (standalone) or bundled (embedded Oracle 9i R2)

RHN Satellite Server

- Entry point for Red Hat Update Agent running on clients
- Apache HTTP server serving XML-RPC requests)

RHN Satellite Web Interface

Advanced system, system group, user, and channel management interface

RPM Repository

 Package repository for Red Hat RPM packages as well as middleware/custom RPM packages.

How it Works

Management Tools

- Database and file system syncrhonization tools
- RPM importing tools
- Channel maintenance tools (Web based)
- Errata management tools (Web based)
- User management tools (Web based)
- Client system and system grouping tools (Web based)
- Red Hat Update Agent on the client systems

Installation Requirements

Software

- RHEL 4 (31-bit or 64-bit)
- @Base install

Hardware

- 1 to 2 (virtual) IFLs
- 2 to 4 GB storage (memory)
- 1 GB swap (combination VDISK, disk)
- 1 x mod3 for OS install
- Estimated 12 GB disk space for embedded database
- 6 GB per channel (disk)

Infrastructure Requirements

Network Ports

- (80, 443) outbound, unless running in disconnected mode
- (80, 443) inbound, for WebUI and client requests
- (4545) outbound, if monitoring is configured and probes are active on clients
- (5222) inbound, to push actions to client systems
- (5269) inbound, to push actions to RHN Proxy Server

Other Requirements

- Red Hat Network account
- Entitlement Certificate

Example RHN Certificate (XML)

- <rhn-cert version="0.1">
- <rhn-cert-field name="product">RHN-SATELLITE-001/rhn-cert-field>
- <rhn-cert-field name="owner">Clay's Precious Satellite/rhn-cert-field>
- <rhn-cert-field name="issued">2005-01-11 00:00:00</rhn-cert-field>
- <rhn-cert-field name="expires">2005-03-11 00:00:00</rhn-cert-field>
- <rhn-cert-field name="slots">30</rhn-cert-field>
- <rhn-cert-field name="provisioning-slots">30</rhn-cert-field>
- <rhn-cert-field name="nonlinux-slots">30</rhn-cert-field>
- <rhn-cert-field name="channel-families" quantity="10" family="rhel-cluster"/>
- <rhn-cert-field name="channel-families" quantity="30" family="rhel-ws-extras"/>
- <rhn-cert-field name="channel-families" quantity="10" family="rhel-es-extras"/>
- <rhn-cert-field name="channel-families" quantity="40" family="rhel-as"/>
- <rhn-cert-field name="channel-families" quantity="30" family="rhn-tools"/>
- <rhn-cert-field name="satellite-version">3.6</rhn-cert-field>
- <rhn-cert-field name="generation">2</rhn-cert-field>
- <rhn-cert-signature>
- ----BEGIN PGP SIGNATURE-----
- Version: Crypt::OpenPGP 1.03
- iQBGBAARAwAGBQJCAG7yAAoJEJ5yna8GlHkysOkAn07qmlUrkGKs7/5yb8H/nboG
- mhHkAJ9wdmqOeKfcBa3IUDL53oNMEBP/dg==
- =0Kv7
- ----END PGP SIGNATURE-----
- </rhn-cert-signature>
- </rhn-cert>

Example Topology – Single Satellite

RHN SATELLITE

Single Satellite Topology Example

Example Topology – Multiple Tiered

RHN SATELLITE Multiple Satellites Horizontally Tiered Topology Example INTERNAL NETWORK INTERNET INTERNAL RHN SATELLITE redhat. INTERNAL

Example – Proxy Vertically Tiered

RHN SATELLITE-PROXY Satellite-Proxy Vertically Tiered Topology Example INTERNAL NETWORK RHN PROXY INTERNET INTERNAL NETWORK RHN SATELLITE RHN PROXY redhat. INTERNAL RHN PROXY

Example – System z (multiple site)

RHN SATELLITE-PROXY

Satellite-Proxy System z Topology Example

Installing RHN Satellite

- mount -o loop iso_filename /media/
- cd /media; ./install.pl
 - ./install.pl --help
 - ./install.pl --disconnected

Installer steps

- Create database
- Import Satellite certificate
- Register/Activate Satellite
- Generate CA certificate for SSL traffic

Import Packages with satellite-sync

- Synchronize metadata/packages with RHN
 - Satellite connected to RHN

Internal steps

- channel-families Import/sync channel family (architecture) data
- channels Import/sync channel data
- rpms Import/sync RPMs
- packages Import/sync full package data for RPMs retrieved successfully
- errata Import/sync Errata information

Import Packages (Disconnected)

- Synchronize metadata/packages from Channel Content ISO
 - Released shortly after each RHEL update on RHN, then in regular increments
- Use channel data from another Satellite
 - rhn-satellite-exporter exports channel families, architectures, channel metadata, blacklists, RPMs, RPM metadata, errata, and kickstarts
 - rhn-satellite-exporter --dir=/var/sat-backup/
 - scp -r storage.example.com:/var/sat-backup/* /var/rhn-sat-import
 - satellite-sync --list-channels --mount-point /var/rhn-sat-import
 - satellite-sync -c rhel-s390x-as-4 --mount-point /var/rhn-sat-import
 - Can specify multiple channels in one command. Estimate ~2 hours per channel.

Sources of further information

- Problem
 - Where can I find further information on RHN Satellite?
- Solution
 - Red Hat Knowledgebase
 - http://kbase.redhat.com/faq/
 - RHN Documentation
 - https://rhn.redhat.com/help/
 - RHN Satellite Users mailing list
 - https://www.redhat.com/mailman/listinfo/rhn-satellite-users
 - RHN Satellite comes with 24/7 support
 - https://www.redhat.com/apps/support/

Contacting Red Hat Support

- Problem
 - My Satellite is not working, what should I do?
- Solution
 - 1) Gather data, include
 - RHN Satellite Debug

```
/usr/bin/satellite-debug
```

System Report

```
/usr/sbin/sysreport
```

RHN Proxy Debug (if needed)

```
/usr/bin/rhn-proxy-debug
```

2) Contact Red Hat Support with data

Appendix – Technical Data

- RHN Satellite Components
- Apache
- Java & RHN Push
- Monitoring
- Database & Taskomatic
- Misc data

RHN Satellite Components

- Web Server Apache
 - Satellite Web UI
 - /XMLRPC
 - /API
- Java Tomcat (new)
- RHN Push Jabber
 - osa-dispatcher (server side)
 - osad (client side)
- Monitoring Technology (new)
 - Monitoring Backend
 - Monitoring Scout
- Database Server Oracle 9i
- Scheduled tasks Taskomatic

RHN Satellite – Apache

- Apache processes within RHN Satellite handle multiple types of requests
 - Satellite Web UI with perl and java components
 - /XMLRPC, /API & /APPLET via python
- Main configuration files
 - /etc/httpd/conf/httpd.conf
 - /etc/httpd/conf/rhn/
 - /etc/rhn/rhn.conf
- Runs with standard httpd daemon on ports 80 and 443

- Apache writes to various log files in the follow locations
 - /var/log/rhn/
 - /var/log/httpd/
- Misc files of note
 - SSL Certificates used by Apache
 - /etc/httpd/conf/ssl.key/server.key
 - /etc/httpd/conf/ssl.crt/server.crt

RHN Satellite – Java & RHN Push

- Tomcat is communicated to via
 Apache for portions of the Java Web
 UI within RHN Satellite 4.0
- Main configuration file
 - /etc/tomcat5/tomcat5.conf
- Main log directory
 - /var/log/tomcat5/
- Tomcat daemon listens to ports
 - 8005
 - 8009
 - 8080

- The jabber protocol is being used by RHN as a means of being able to push scheduled actions to systems.
 - Satellite connects to jabber (osadispatcher)
 - Clients connect to jabber (osad)
- Main configuration files for push technology
 - /etc/jabberd/jabberd.cfg
 - /etc/rhn/rhn.conf
- Main log files are
 - /var/log/messages
 - /var/log/rhn/osa-dispatcher.log

RHN Satellite – Monitoring

- Monitoring Backend
- Monitoring Scout
 - Scout can also be on the same server as the backend
- Some of the monitoring configuration files
 - /etc/rhn/rhn.conf
 - /etc/rhn/cluster.ini
 - /etc/NOCpulse.ini
 - /etc/httpd/conf/rhn/rhn_monitoring.conf
- Specific to Scout
 - /home/nocpulse/etc/SatCluster.ini

- Monitoring has one main nanny script which is gogo.pl
- Nearly all Monitoring logging is done within
 - /home/nocpulse/var/
 - /opt/notification/var/

RHN Satellite – Database & Taskomatic

- RHN Satellite needs communication to an Oracle 9i Database Server
 - Embedded or External Oracle
- Main configuration files for database
 - /etc/tnsnames.ora
 - /etc/rhn/rhn.conf
 - /opt/apps/oracle/config/9.2.0/spfil erhnsat.ora
- Listener daemon (tnslsnr) runs localhost only on port 1290
- Main log files for Oracle
 - /var/log/rhn/rhn_database.log
 - /rhnsat/admin/rhnsat/bdump/alert _rhnsat.log

- Taskomatic is a daemon that runs constantly on RHN Satellite. It is used to execute scheduled tasks which are queued in the database.
- Uses /etc/rhn/rhn.conf configuration file.
- Logs into /var/log/messages

Anything else I should know?

- The most important configuration file
 - /etc/rhn/rhn.conf
- Two common general options of interest that can be changed
 - traceback_mail change the default email address alerts go to. Check this email address for traceback emails if something goes wrong
 - debug default is 1, setting to 5 or 6 is enough for troubleshooting
- Restart RHN Satellite services using command
 - service rhn-satellite restart
 - This will run the following service scripts
 - jabberd rhn-database osa-dispatcher taskomatic
 - tomcat5 httpd Monitoring MonitoringScout

Questions?