
11. 03. 2022

Methodologies that 
helps with styling 
applications

How to structure, scale and maintain CSS



A little bit of history



Space Jam



How we style web sites



Layout



Tables for everything



Today, we have layout properties

➔ Float (before flexbox come into game)

➔ Flexbox 

➔ Grid

➔ Subgird

➔ etc.



So, CSS is improving every day



Writing good CSS is hard

“CSS: the only language that is both so easy it’s 
not worth learning but also so hard that it’s not 
worth learning.”



So why is CSS so hard to maintain?

➔ Deep nesting of selectors and high specificity

➔ Nesting Hell 

➔ Cascade

➔ Inheritance

➔ Misunderstanding of how CSS works

Why?



Let's take a quick simplest example

https://codepen.io/ondrejko/pen/xxpKRyo

https://codepen.io/ondrejko/pen/xxpKRyo?editors=1100


That means that order in the resulting file matters!

≠



Can you check for e.g. selector order in the resulting CSS file?



Because there is thousands of lines

Current Dashboard CSS file with 8200 line of code:



Deep nesting of selectors and high specificity

HTML:

CSS:



The link color has not changed

What is in CSS and what blocks me?



What are the options?

Selector overload (or refactor code or use !important)

Such a selector can be really hard to modified



Nesting Hell



You would say, that is not so bad, but..

Output in style.css:



“Nesting selectors” is a good friend but a bad lord

It is alway good approach to stay simple as possible



Takeaway: Avoid nesting as much as possible

If you need to nest selectors in the third level, 
something is wrong with design/usage of the 

component and we call it “Design smell”.



Cascade



We often end up like this



Our current Dashboard



What we can do? Use some good approaches



ITCSS



ITCSS



ITCSS
Settings — Space for preprocessors with variables such as colors, design tokens, 
typography, grid.
Tools — Layer with mixins, functions, media queries.

Generic — Here we insert styles for third party libraries such as normalize, reset or 

any others

Elements — Selectors for bare HTML elements such as h1, p, article, a

Objects — Class definitions for layout, grid, indentation - reusable non-decorative 

styles.

Components — Specific components across the project - accordion, buttons, 

breadcrumbs, tooltip.

Utilities — Class utilities that are designed to affect one particular CSS property and 

are in most cases written with the utmost importance. Utilities and helper classes with 

ability to override anything which goes before in the triangle.



ITCSS structure is great for any project 
and it is easy to use



BEM



What is important to realize?

“The more experienced developer you are, the 

more you prefer code readability to efficiency”



Why BEM?

➔ Find and write CSS rules in a large project is easy.

➔ Organize rules for media queries and reusable libraries.

➔ Reduce the complexity and nesting of your CSS selectors.

➔ Have a consistent approach to positioning elements on the page.

➔ Have a consistent approach to changing the look of HTML.

➔ Have a consistent approach to composing larger components from smaller components.

➔ A unified approach that is easy to explain to newcomers

➔ It keeps the world of CSS safe from mess and clutter.



BEM is G. R. E. A. T



G. R. E. A. T
G for Global

BEM is one of the most recognized naming conventions out there. So if you are 
introducing a new team member to your BEM project, there’s a good chance 
they already know the convention, which reduces initial friction and allows them 
to be productive since day 1.



G. R. E. A. T
R for Readable

Thanks to descriptive class names given to basically every element, the 
stylesheet is easy to read on its own. Not only selectors look better, they also 
work faster than deeply nested ones.



G. R. E. A. T
E for Expandable

As the specificity of CSS selectors is minimal, adding another variation is very 
simple. Single modifier class should be enough — no more ‘at least equal 
selector weight’ toil.



G. R. E. A. T
A for Adaptable

Sharing the philosophy of modularity, BEM naturally works fine with 
frameworks. Also, styling is independent of elements type and nesting, making 
it less prone to break when tackling with document structure.



G. R. E. A. T
T for Tough

There are only two hard things in Computer Science: 
cache invalidation and naming things.

➔ finding proper block names makes the code clean and legible to others (your future self included)

➔ reusing existing blocks
➔ avoiding multi-level nesting makes you rethink document structure

When you start following BEM (fully and honestly), you’ll probably find yourself 
struggling with it constantly. Paradoxically, it’s a good thing:



Tailwind, and why I would consider not using it



Tailwind is good for

- Quickly prototyping

- Safety - there is nothing in design that is not in config

- Small projects like personal sites, blog sites etc.



Tailwind is (IMHO) not good for large scaled projects

- Styling and HTML are Mixed

- It Takes Time to Learn (not necessarily a disadvantage)

- Lack of Important Components (not so much components)

- Components aren’t provided by default

- Unreadable class names

- It's Inconsistent (items-*: align or justify? content-*: align or justify?)

- It's Difficult to Read

- Really hard to do code reviews 

- You Can't Chain Selectors

- Tailwind Locks You Into the Utility CSS Paradigm

- Tailwind Is an Unnecessary Abstraction

- Tailwind, Dev Tools, and Developer Experience (Imposible create variants)



It's Inconsistent

items-*: align or justify?

content-*: align or justify?

justify-*: content or items?

align-*: content or items?



It's hard to read

<div class="w-16 h-16 md:w-32 md:h-32 lg:w-48 lg:h-48"></div>

<div class="w-16 h-16 rounded text-white bg-black py-1 px-2 m-1 text-sm md:w-32 md:h-32 

md:rounded-md md:text-base lg:w-48 lg:h-48 lg:rounded-lg lg:text-lg" > Yikes. </div>



It's hard to read



More pleasure for eyes



You Can't Chain Selectors



It's Harder to Tweak CSS in Dev Tools

➔ It is hard to simulate styling in DevTools

➔ It's Harder to Find Components in Dev Tools

➔ Recompiling HTML Is Slower Than Recompiling CSS



Tailwind Is Still Missing Some Key Features of CSS

➔ Container Queries

➔ :has() selector

➔ @when/@else rules

➔ Cascade Layers

➔ Subgrid

➔ Nesting 

What will be in CSS specification soon? What is in working drafts?


