
Request Smuggling
Rohit Narayanan M

08-09-21

Request smuggling
HTTP request smuggling is
a technique for interfering
with the way a web site
processes sequences of
HTTP requests.

When you get a classic
request smuggling
vulnerability, it is typically
because the front end and
the back end disagree
about whether they
should use the content
length or the transfer and
coding header.

What is happening
When the front-end server
forwards HTTP requests to
a back-end server, it sends
several requests over the
same back-end network
connection, because this
is much more efficient.

The protocol is very
simple - HTTP requests
are sent one after another

The receiving server
parses the HTTP request
headers to determine
where one request ends
and the next one begins:

CL & TE Headers

Content-Length
header indicates the size of the
message body, in bytes, sent to the
recipient.

The value will be the length of the
content passed

POST /search HTTP/1.1
Host: normal-website.com
Content-Length: 15

h=contentlength

Transfer-Encoding
header specifies the form of encoding
used to safely transfer the payload
body to the user.

chunked, compress, deflate, gzip

POST /search HTTP/1.1
Host: normal-website.com
Transfer-Encoding: chunked

h=transferencoding\r\n
0\r\n
\r\n

How is it dangerous

Attacker

● can obtain access to forbidden resources like site administration
● can view sensitive data or even hijack the web session of any user.
● can resort to other attacks like cache poisoning, XSS (cross-site scripting)

without user interaction, credential hijacking, and firewall protection bypass.

Attacker targets the cache server during a cache poisoning attack. The
intention is to show a user a wrong page upon request.

The HTTP request smuggling vulnerability can lead to an account takeover.

How to detect it
The most generally effective way to detect HTTP request smuggling vulnerabilities is
to send requests that will cause a time delay in the application's responses if a
vulnerability is present.

Request Smuggling

● CL.CL: Will send 2 Content-Length headers and the front-end will take one
and the backend the other one

● CL.TE: The front-end server uses the Content-Length header and the
back-end server uses the Transfer-Encoding header.

● TE.CL: The front-end server uses the Transfer-Encoding header and the
back-end server uses the Content-Length header.

● TE.TE: The front-end and back-end servers both support the
Transfer-Encoding header, but one of the servers can be induced not to
process it by obfuscating the header in some way.

CL-TE

Here, the front-end server uses the Content-Length header and the back-end server
uses the Transfer-Encoding header. We can perform a simple HTTP request
smuggling attack as follows

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 13
Transfer-Encoding: chunked

0

SMUGGLED

CL-TE

POST / HTTP/1.1
Host: vulnerable-website.com
Transfer-Encoding: chunked
Content-Length: 4

1
A
X

Since the front-end server uses the Content-Length header, it will forward only part
of this request, omitting the X. The back-end server uses the Transfer-Encoding
header, processes the first chunk, and then waits for the next chunk to arrive. This
will cause an observable time delay.

TE-CL

Here, the front-end server uses the Transfer-Encoding header and the back-end server uses the
Content-Length header. We can perform a simple HTTP request smuggling attack as follows:

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 3
Transfer-Encoding: chunked

8
SMUGGLED
0

TE-CL

POST / HTTP/1.1
Host: vulnerable-website.com
Transfer-Encoding: chunked
Content-Length: 6

0

X

Since the front-end server uses the Transfer-Encoding header, it will forward only
part of this request, omitting the X. The back-end server uses the Content-Length
header, expects more content in the message body, and waits for the remaining
content to arrive. This will cause an observable time delay.

TE-TE

Can be done by obfuscating the Transfer-Encoding header

● Transfer-Encoding: xchunked
● Transfer-Encoding : chunked
● Transfer-Encoding: chunked
● Transfer-Encoding: x
● Transfer-Encoding:[tab]chunked
● [space]Transfer-Encoding: chunked
● X: X[\n]Transfer-Encoding: chunked
● Transfer-Encoding
● : chunked

DEMO

● CL.TE
● TE.CL

https://portswigger.net/web-security/request-smuggling/lab-basic-cl-te
https://portswigger.net/web-security/request-smuggling/lab-basic-te-cl

Real world impacts

Gunicorn accepts a plus sign or a minus sign in front of the value in the
Content-Length header.

Also a bug was discovered which causes Gunicorn to send the response before
reading the body of the corresponding request. This only occurs if the request
handler invoked by Gunicorn never reads any part of the body.

Combining both

We can send the request and gunicorn

 Will see this

Chunk Extension

There is a proxy which parses chunk extensions incorrectly. It reads the chunk size
and then reads any character until it encounters a \n. It doesn't verify whether there
was a CR before the LF.

This could be combined with many of the servers tested
since most servers allow any characters as part of the
extension (particularly LF) but read the line until they reach
CRLF. So we arrive at the following attack (all lines are
terminated by CRLF):

Here the proxy will see 2 chunks While the server will only
see one chunk and another request after it.

HTTP/2

Here is an HTTP/1.1 request and its Equivalent request in HTTP/2

HTTP/2

Pseudo-Headers

In HTTP/1, the first line of the request contains the request method and path.
HTTP/2 replaces the request line with a series of pseudo-headers. The five
pseudo-headers are easy to recognize as they're represented using a colon at the
start of the name:
:method - The request method
:path - The request path. Note that this includes the query string
:authority - The Host header, roughly
:scheme - The request scheme, typically 'http' or 'https'
:status - The response status code - not used in requests

HTTP/2

Binary Protocol

HTTP/1 is a text-based protocol, so requests are parsed using string operations. For
example, a server needs to look for a colon in order to know when a header name
ends. The potential for ambiguity in this approach is what makes desync attacks
possible. HTTP/2 is a binary protocol like TCP, so parsing is based on predefined
offsets and much less prone to ambiguity. This paper represents HTTP/2 requests
using a human-readable abstraction rather than the actual bytes. For example, on
the wire, pseudo-header names are actually mapped to a single byte - they don't
really contain a colon.

HTTP/2

Message Length

In HTTP/1, the length of each message body is indicated via the Content-Length or
Transfer-Encoding header.
In HTTP/2, those headers are redundant because each message body is composed
of data frames which have a built-in length field. This means there's little room for
ambiguity about the length of a message, and might leave you wondering how
desync attacks using HTTP/2 are possible. The answer is HTTP/2 downgrading.

HTTP/2 Desync Attacks

HTTP/2 downgrading is when a front-end server speaks HTTP/2 with clients, but rewrites requests
into HTTP/1.1 before forwarding them on to the back-end server. This protocol translation enables
a range of attacks, including HTTP request smuggling:

H2.CL vulnerabilities

HTTP/2 requests don't have to specify their length explicitly in a header.

During downgrading, front-end servers often add a Content-Length header, its
value using HTTP/2's built-in length mechanism.

some front-end servers will simply reuse the value of content-length passed

DEMO

● H2.CL

https://portswigger.net/web-security/request-smuggling/advanced/lab-request-smuggling-h2-cl-request-smuggling

H2.TE vulnerabilities

Chunked transfer encoding is incompatible with HTTP/2 and the spec recommends
that any transfer-encoding: chunked header you try to inject should be stripped or
the request blocked entirely. If the front-end server fails to do this, and
subsequently downgrades the request for an HTTP/1 back-end that does support
chunked encoding, this can also enable request smuggling attacks.

Response Queue Poisoning

Front-end server to start mapping responses from the back-end to the wrong
requests
Attacker can capture other users' responses by issuing arbitrary follow-up requests

Response Queue Poisoning
The front-end correctly
maps the first response to
the initial request

There is no further requests

When the front-end receives
another request, it forwards
this to the back-end as
normal. However, when
issuing the response, it will
send the first one in the
queue, that is, the leftover
response to the smuggled
request.

Request smuggling via CRLF injection

● In HTTP/1, you can sometimes exploit discrepancies between how servers
handle standalone newline (\n)

● This discrepancy doesn't exist with the handling of a full CRLF (\r\n) sequence
because all HTTP/1 servers agree that this terminates the header.

● HTTP/2 messages are binary. So \r\n no longer has any special significance
● So it can be included inside the value itself without causing the header to be

split

HTTP request tunnelling

some servers only allow requests originating from the same IP
address or the same client to reuse the connection. Others won't
reuse the connection at all
you can send a single request that will elicit two responses from the
back-end. This enables you to hide a request and its response from
the front-end altogether.

Leaking internal headers

You can potentially trick the front-end into appending the internal headers inside
what will become a body parameter on the back-end.
Let's say we send a request that looks something like this:
he front-end sees everything we've injected as part of a header, so adds any new
headers after the trailing comment= string.

How to prevent It

● Use HTTP/2 end to end and disable HTTP downgrading if possible.
HTTP/2 uses a robust mechanism for determining the length of
requests and, when used end to end, is inherently protected against
request smuggling. If you can't avoid HTTP downgrading, make sure you
validate the rewritten request against the HTTP/1.1 specification. For
example, reject requests that contain newlines in the headers, colons in
header names, and spaces in the request method.

● Make the front-end server normalize ambiguous requests and make the
back-end server reject any that are still ambiguous, closing the TCP
connection in the process.

References

● https://portswigger.net/web-security/request-smuggling
● https://portswigger.net/web-security/request-smuggling/advanced
● https://snyk.io/blog/demystifying-http-request-smuggling/
● https://blog.zeddyu.info/2019/12/08/HTTP-Smuggling-en/
● https://www.cgisecurity.com/lib/http-request-smuggling.pdf
● https://grenfeldt.dev/2021/10/08/gunicorn-20.1.0-public-disclosure-of-re

quest-smuggling
● https://www.youtube.com/watch?v=rHxVVeM9R-M

https://portswigger.net/web-security/request-smuggling
https://portswigger.net/web-security/request-smuggling/advanced
https://snyk.io/blog/demystifying-http-request-smuggling/
https://blog.zeddyu.info/2019/12/08/HTTP-Smuggling-en/
https://www.cgisecurity.com/lib/http-request-smuggling.pdf
https://grenfeldt.dev/2021/10/08/gunicorn-20.1.0-public-disclosure-of-request-smuggling
https://grenfeldt.dev/2021/10/08/gunicorn-20.1.0-public-disclosure-of-request-smuggling
https://www.youtube.com/watch?v=rHxVVeM9R-M

