
Incremental 
Development
Maintaining and improving 
long-lived sites



1.
The WHAT.



Long-lived
- Common for web 

applications and 
products (themes)

- Legacy code 
abounds!

Short-lived
- Microsites
- Marketing sites 

(movies, promotions)
- Whoops, you don’t 

exist anymore!

3



Our challenges.
Code from 4+ years ago.

4



Legacy code is 
everywhere.
How much are you living with?

5



It’s all around us...

● Third-party libraries that are defunct
● Cryptic code written by a technical wiz
● Custom In-house frameworks
● Languages that have a dwindling supply 

of developers
● Code you wrote last month in a rush



Technical debt is 
unavoidable.
Does your team pay off their credit card every month? 

7



Be kind.
Don’t spend energy blaming previous developers.

8



Reckless Prudent

Deliberate

Inadvertent

No one has time to 
review it, so we’ll 
just commit to 
master.

We know this bug 
exists, but we have 
to focus on this 
feature instead.

In hindsight, it’s 
clear that we should 
have taken this 
approach instead.

What are JavaScript 
design patterns?

- Martin Fowler



1.
The WHY.



“ Legacy code. The phrase strikes disgust in the 
hearts of programmers. It conjures images of 
slogging through a murky swamp of tangled 
undergrowth with leeches beneath and stinging 
flies above. It conjures odors of murk, slime, 
stagnancy, and offal. Although our first joy of 
programming may have been intense, the misery of 
dealing with legacy code is often sufficient to 
extinguish that flame.

- Michael Feathers, Working Effectively with Legacy Code

11



Whoa.
That doesn’t sound fun.

12



Reaching the Tipping Point

● Developers are scared to change 
anything

● Worried about the “Butterfly Effect”
● No one want to work on that codebase 

anymore
● Architecture can’t be scaled/impacts 

future planning
● High turnover on the team



Be kind to your future self

● Be ready to support new features down 
the line

● Not all “features” are optional (eg. a11y)
● Browsers change rapidly and new APIs 

appear that you will want to use
● There is no “set it and forget it”



Maintenance is often overlooked

● It’s not hip, cool or sexy
● Not working with code that is the latest 

and greatest
● BUT being able to properly understand 

(and respect) legacy code is a skill
● It is critical and important



Preaching to the 
choir.
You already feeling the pain..

16



1.
The WHERE.



I see dead 
parentheses.
Identifying your issues.

18



Questions to ask

● Is it currently broken? Like really broken?
● Can a hotfix be applied in the short-term?
● When is the last time the code was 

touched?
● Are you refactoring just to be fancy?
● Does anyone understand what the code 

does?
● Does the old code affect new code?



Make friends with 
your codebase.
Leave that bitterness at the door.

20



Spend time with your code

● Practice reading other people’s code
● Work your way through the event flows 

(Characterization tests)
● Get acquainted before you make edits
● Identify easy fixes like removing old 

polyfills and unnecessary vendor prefixes 
(tiny wins, but still tidies things up)

https://en.wikipedia.org/wiki/Characterization_test


Resist the urge to tear it all down

● Time investment is massive - most 
companies can’t afford this (t = $)

● BUT small iterative improvements can 
have a big impact (especially in the front 
end)

● Team is familiar with current stack and 
introducing new one would cause major 
friction



Or maybe… tear it all down

● Higher-ups are on board, willing to invest
● Architecture is needlessly complicated for 

something that could be built with a 
modern framework

● MUST have clear spec to make sure there 
is not massive loss of features



1.
The HOW.
(Mileage may vary)



A caveat...

● Focusing on the front end
● Suggestions are from personal experience 

and case studies from other companies
● Unfortunately every codebase is different



Documentation.
(collective groan)

26



Code style guides.
Get everyone on the same page.

27



Design patterns.
Rinse and repeat..

28



Tooling.
Linters, compilers, task-runners - make your life easy-ers.

29



Test Driven 
Development.
Can take a while to implement, but time savings in the long 
term. 

30



Feature flags.
Only visible to a select few.

31



Version control.
For your sanity.

32



Releases.
And a changelog!

33



Some examples...
Just a couple - there are lots!

34



Case studies

● Github and removing jQuery from 
front end

● Dropbox moving from Underscore to 
Lodash

● Slack having to tweet about legacy 
code :(

● Dependencies - left-pad
● CloudZoom vs newer Zoom library



1.
The WHO.



Warm and fuzzies.
It is TOUGH to work on legacy code all day every day.

37



“ Fall in Love with the 
Problem, Not the 
Solution

- Unknown

38



We’re all in this together

● Refactor your own code! Nothing is 
too precious to be reworked and 
improved

● Provide opportunities to work on new 
features

● Get team to take personal ownership 
of code that they are commiting



Tenacity and optimism

● Don’t become complacent with the 
code you are committing

● Know your contribution affects the 
long-term prospects of the business 
and the site 



Get buy-in.
Use data to back up importance of tackling technical debt 
with those holding the purse-strings.

41



Know when to ask for help

● Employees aren’t always going to 
have specific skill set you need

● Is it cheaper to hire someone vs. do it 
yourself?

● An expert can almost always 
accelerate the process

● Don’t develop in a vacuum - different 
perspectives can be invaluable



1.
The WHEN.



Is it worth it? 

● Can be difficult to convince people in 
charge of budgets to go back and 
update “working” code

● Speak to fragility of existing code
● Spaghetti code impedes velocity of 

new feature implementation
● Performance!



Don’t bet the farm - wait out 
trends

● Difficult to hire for outdated tech
● Technology changes at incredible 

pace - think back 2, 5, 10, 15 years
● Popularity = more resources
● WordPress vs SilverStripe vs MODx
● React vs Angular vs Vue vs 

NewHotness



Start on the right foot

● Learn from past mistakes
● Make sure you have someone on 

your team who understands 
architecture

● Think ahead to future features
● Understand the mvp
● Build time for maintenance into 

your developers’ schedule



Resources

● Working Effectively with Legacy Code - 
Michael Feathers (OOP)

● Life-changing magic of deleting code
● Human cost of technical debt
● How to conquer legacy code
● Getting to know a legacy codebase
● So you've inherited a legacy codebase
● Top 4 symptoms of bad code
● 10 Things you will eventually learn about JS 

projects

https://www.amazon.ca/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
https://medium.engineering/the-life-changing-magic-of-deleting-code-be5cb3ffb391
https://daedtech.com/human-cost-tech-debt/
https://medium.freecodecamp.org/conquer-legacy-code-f9e23a6ab758
https://csswizardry.com/2018/07/getting-to-know-a-legacy-codebase/
https://dzone.com/articles/so-youve-inherited-a-legacy-codebase
https://www.excella.com/insights/top-4-symptoms-of-bad-code
https://blog.usejournal.com/10-things-you-will-eventually-learn-about-javascript-projects-efd7646b958a
https://blog.usejournal.com/10-things-you-will-eventually-learn-about-javascript-projects-efd7646b958a


“ It is not the strongest of the 
species that survives, nor the most 
intelligent that survives. It is the 
one that is the most adaptable to 
change.

- Charles Darwin

48



Thank you!

@AlfalfaAnne
@outofthesandbox 49


