
Horacio Gonzalez
2026-01-15

Rediscovering PHP
Modern Practices Beyond
Legacy

Who are we?
Introducing myself and

introducing Clever Cloud

Horacio Gonzalez

@LostInBrittany

Spaniard Lost in Brittany
Old(ish) Developer

Clever Cloud
From Code to Product

You're going to talk about PHP ?!?!
The elephpant IS in the room

So yeah, I know both PHP and its reputation…

And in 2004 is was quite accurate, PHP felt like the Wild
West

If you think PHP is inconsistent, insecure, and
strictly procedural...

You were right 15 years ago !

I've been a Java developer since '97

And I have done tons of frontend in HTML/CSS/JS

But I've also written and debugged lots of PHP

I even made a living of it!

For years I kept away from PHP

I reckon I was a bit snobbish about it…

Until I joined Clever Cloud and rediscovered it

And, mate, it was so much better!

PHP is not like PHP 4 anymore

PHP powers 75%+ of the web…
and 90% of that usage looks nothing like WordPress 3.0

PHP – The Language
Syntax for the Java Mind

Code Organization: Namespaces & Autoloading

PSR-4 Autoloading: clean namespace hierarchy

namespace App\Http\Controllers;

use App\Services\UserService;

use App\Models\User;

use App\Mail\WelcomeEmail;

class UserController

{

 public function __construct(

 private UserService $userService

) {}

 …

}

include 'config.php';

include 'database.php';

include 'functions.php';

include 'models/user.php';

include 'models/admin.php';

include 'controllers/user_controller.php';

include 'lib/email.php';

include 'lib/validator.php';

// ... 50 more includes ...// Everything is global

$user = new User();

$admin = new Admin();

// Name collision disasters waiting to happen:

function send_email() { } // From email.php

function send_email() { } // Oops, redeclared in another file!

The Good Old Days The Modern Way

Typing

From "Anything Goes" to Strictness

declare(strict_types=1); // <--- The "Java Switch"

 // Contract-based programming. If you violate the contract,

 // the application stops immediately. No guessing.

final class UserFactory

{

 // Typed Arguments, Return Type, Visibility

 public function create(

 string $name, int $age, bool $isActive

): string {

 if ($isActive) {

 return sprintf("User: %s is %d", $name, $age);

 }

 throw new InactiveUserException();

 }

}

function createUser($name, $age, $active) {

 // Is $age an int? "20"? 20.5?

 // Is $active a boolean? 0? 1? "yes"?

 if ($active == 1) {

 return "User: " . $name . " is " . $age;

 }

 // Returns null implicitly if condition fails

 // Inconsistent return types!

}

$u = createUser("Horacio", "45", "true");

// Works, but relies on "Magic" casting.

The Good Old Days The Modern Way

The Type System Flex (Union & Intersection Types)

No need for overloading boilerplate.

public function handle(User|Guest $entity): Response

{

 // Type system knows it's one of these

 // IDE autocomplete works

 // Static analysis validates it

 return match(true) {

 $entity instanceof User => $this->handleUser($entity),

 $entity instanceof Guest => $this->handleGuest($entity),

 };

}

// Return type unions: much cleaner than Optional

public function findUser(int $id): User|null

{

 return $this->repository->find($id);

}

// Must satisfy BOTH interfaces

public function log(Loggable&Serializable $event): void

The Modern Way

Constructor Property Promotion (PHP 8.0+)
class UserProfile

{

 public function __construct(

 // Visibility + Type + Name = Property Created & Assigned

 private string $name,

 private string $email,

 private int $age,

) {}

 // That's it. Properties are declared, assigned, and accessible.

 // Getters are optional - you decide based on your encapsulation needs.

}

// Want to make it immutable like a Java Record?

// Just add 'readonly' (PHP 8.2+):

class ImmutableUser

{

 public function __construct(

 public readonly string $name,

 public readonly string $email,

) {}

}

class User

{

 private string $name;

 private string $email;

 private int $age;

 public function __construct(string $name, string $email, int $age)

 {

 $this->name = $name;

 $this->email = $email;

 $this->age = $age;

 }

 public function getName(): string { return $this->name; }

 public function getEmail(): string { return $this->email; }

 public function getAge(): int { return $this->age; }

}

The Good Old Days The Modern Way

Attributes: the End of "Code in Comments"

use Symfony\Component\Routing\Attribute\Route;

use Symfony\Component\Security\Http\Attribute\IsGranted;

class UserController

{

 // Native syntax. "Route" is a real class found via "use"

 #[Route('/api/users', methods: ['GET'])]

 #[IsGranted('ROLE_ADMIN')]

 public function list(): Response

 {

 // ...

 }

}

// How to make your own Attribute? It's just a class!

#[Attribute]

class MyCustomMetadata

{

 public function __construct(public string $info) {}

}

class UserController

{

 /**

 * @Route("/api/users", methods={"GET"})

 * @IsGranted("ROLE_ADMIN")

 *

 * This is technically a comment.

 * If I typo "@Rout", nothing crashes...

 * until the app runs and the route is missing.

 */

 public function list()

 {

 // ...

 }

}

The Good Old Days The Modern Way

Enums (The Real Deal)
/ 1. Defined using 'enum' keyword

enum Status: string

{

 case Draft = 'draft';

 case Published = 'published';

 case Archived = 'archived';

 // 2. THEY CAN HAVE METHODS! (Just like Java)

 public function color(): string

 {

 return match($this) {

 self::Draft => 'gray',

 self::Published => 'green',

 self::Archived => 'red',

 };

 }

}

// 3. Type Safety is absolute

function updateStatus(Status $newStatus): void {

 // Impossible to pass "foo" or "draft" string here.

}

// 4. Accessing values

echo Status::Published->value; // "published"

echo Status::Published->color(); // "green"

class BlogPost

{

 // These are just strings.

 // Nothing prevents me from passing "garbage" to a function expecting a

status.

 const STATUS_DRAFT = 'draft';

 const STATUS_PUBLISHED = 'published';

 const STATUS_ARCHIVED = 'archived';

 public function setStatus(string $status) {

 // I have to manually validate if $status is one of the allowed

constants

 if (!in_array($status, [self::STATUS_DRAFT, ...])) {

 throw new Exception();

 }

 $this->status = $status;

 }

}

The Good Old Days The Modern Way

Match Expressions
$status = 200;

// 1. Assign result directly to variable

// 2. Strict comparison ('200' string will NOT match 200 int)

// 3. Comma-separated values for multiple matches

$message = match ($status) {

 200 => 'OK',

 300, 301 => 'Redirect',

 404 => 'Not Found',

 default => 'Unknown',

};

// Bonus: Pattern matching in PHP 8 allows logic inside match!

/*

$result = match (true) {

 $age >= 18 => 'Adult',

 $age < 18 => 'Minor',

};

*/

// The problem:

// 1. Loose comparison ('200' string matches 200 int)

// 2. Requires 'break' (easy to forget = fallthrough bugs)

// 3. Verbose assignment logic

$status = 200;

$message = null;

switch ($status) {

 case 200:

 $message = 'OK';

 break;

 case 300:

 case 301:

 $message = 'Redirect';

 break;

 case 404:

 $message = 'Not Found';

 break;

 default:

 $message = 'Unknown';

}

The Good Old Days The Modern Way

PHP – The Ecosystem
Professionalism & Tooling

The PSR Standards (PHP-FIG)

PHP-FIG: Agree on Interfaces, not Implementations
PSRs (PHP Standard Recommendations).

PSR: Dependency Inversion

True Dependency Inversion at a community scale

// Decoupled. Relies on PSR-3 Standard.

use Psr\Log\LoggerInterface;

class UserManager

{

 public function __construct(

 private LoggerInterface $logger // <--- INTERFACE ONLY

) {}

 public function create() {

 // Guaranteed to exist on ANY PSR-3 compliant logger

 $this->logger->info('User created');

 }

}

// Tightly coupled to "Monolog"

use Monolog\Logger;

class UserManager

{

 public function __construct(

 private Logger $logger // <--- HARD DEPENDENCY

) {}

 public function create() {

 // Tied to Monolog's specific method names

 $this->logger->addInfo('User created');

 }

}

The Good Old Days

Dependency Management: Composer

Dependency Management: Solved since 2012

{

 "require": {

 "monolog/monolog": "^3.0"

 }

}

// Terminal command: composer require monolog/monolog

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>2.0.7</version>

</dependency>

<!-- And then refresh your IDE... -->

PHP - Composer composer.jsonJava - Maven pom.xml

PHPStan: The Compiler Substitute

$ vendor/bin/phpstan analyse src --level=9

1/1 [▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓] 100%

------ ---

 Line src/UserManager.php

------ ---

 18 Parameter #1 $users of method UserManager::activateAll()

 expects array<User>, array{User, User, string} given.

 Type string is not subtype of User.

------ ---

[ERROR] Found 1 error

class UserManager

{

 /**

 * @param array<User> $users <-- PHPStan reads this "Generic" definition

 */

 public function activateAll(array $users): void

 {

 foreach ($users as $user) {

 // Runtime: If $user is NOT a User object, this crashes HERE.

 $user->activate();

 }

 }

}

// The Bug:

$managers = [new User(), new User(), "oops, a string"];

(new UserManager())->activateAll($managers);

$ phpstan

PHP

PHP – Performance & Architecture

JIT & Performance

Sources: Kinsta, Tideways, ICDSoft, PHP manual, various public benchmarks

The Frameworks: Symfony & Laravel

Symfony is Spring Boot. Laravel is Rails.

We aren't scripting anymore; we are architecting

Symfony: The Enterprise Standard

use Symfony\Component\DependencyInjection\Attribute\Autowire;

class ReportGenerator

{

 // Constructor Injection is the standard.

 // The container automatically injects the implementation o

public function __construct(

 private MailerInterface $mailer

) {}

}

@Service

public class ReportGenerator {

 private final Mailer mailer;

 @Autowired

 public ReportGenerator(Mailer mailer) {

 this.mailer = mailer;

 }

}

The Good Old Days PHP - Symfony

If you know Spring, you know Symfony
■ Dependency Injection Container
■ Decoupling
■ Stability

Java - Spring

Laravel: The "Developer Happiness" Framework

If you love the speed of Express or Rails,
Laravel is that, but typed.

It’s not just a framework; it’s a platform.

● Eloquent ORM: (ActiveRecord)
Incredibly expressive

● Queue Workers: (Laravel Horizon)
Redis-backed queues out of the box.

● Real-time: (Laravel Reverb)
WebSockets without Node.js.

● Serverless: (Laravel Vapor)
AWS Lambda deployment helper.

● …

<?php

// Find all active users and email them... in 3 lines.

User::query()

 ->where('active', true)

 ->get()

 ->each(fn(User $user) =>

 Mail::to($user)->send(new WelcomeEmail()));

PHP - Laravel

New Runtimes: Async & Long-Running Processes

PHP used to die after every request. Not anymore.

The Game Changer: FrankenPHP

A modern application server written in Go,
built on top of Caddy, that embeds the PHP
interpreter and most popular extensions
● Worker Mode
● Early Hints (HTTP 103)
● Real-Time Mercure hub
● Static Binary

PHP – Myths, Misconceptions, and
Reality Checks

"PHP is slow"

Myth busted!

"PHP has no types"

Myth busted!

"PHP apps don't scale"

Myth busted!

"PHP code is spaghetti"

Myth busted!

Modern PHP uses Strict MVC or
 Clean Architecture

If you write 1000 lines of code in a single file in Java,
it's spaghetti. If you do it in PHP, it's spaghetti.

Bad code is language-agnostic

"PHP is insecure"

Myth busted!

"PHP developers are isolated"

Myth busted!

WordPress Question: "Why Does It Still Look Old?

Legacy Deployment ≠ Language Limitation
Chose backward compatibility Chose modernization

PHP – The Polyglot Conclusion

The "Right Tool" Matrix (PHP vs The World)

PHP don't want to be Java. It wants to be the web.

Reality Check: When PHP Isn't the Answer

Honest Assessment: Choose the Right Tool

PHP isn't the language you remember

It's a pragmatic, high-performance tool that respects your
time.

Don't hate it, add it to your toolbox

PHP – Live Demo / Code Walkthrough

A challenge proposed by Zenika Clermont-Ferrand

Meetup driven development

Show me the code!

https://github.com/LostInBrittany/clash-of-pop-culture

https://github.com/LostInBrittany/clash-of-pop-culture

Clash of Pop Culture

https://clash-of-pop-culture.cleverapps.io/index.html

https://clash-of-pop-culture.cleverapps.io/index.html

Thank you all!

That's all, folks!

Please le
ave yo

ur

feedback!

