
From High-Level to 
Systems Programming:
 
A Practical Guide to Rust





Maybe your 
language of 
choice is…



Maybe your 
language of 
choice is…



Maybe your 
language of 
choice is…



And now you want 
to learn Rust 

How do you start?



My journey to Rust started with…













My months leading up to the Academy…





How will you start?



1 2

3

Getting Started Rust Syntax

Ownership
4

Generics



Getting Started



Major Differences



● Interpreted
● Dynamic typing
● Garbage collected

● Interpreted
● Dynamic typing
● Garbage collected

● Interpreted
● Dynamic typing
● Garbage collected

JavaScript Python Ruby



● Compiled
● Static typing
● Manual memory management

Rust



Developer Ecosystem



“Rust is on its seventh year as the most 
loved language with 87% of developers 
saying they want to continue using it.”



Growing ecosystem 
of libraries and tools

Web development: Actix, Rocket, Tide
Async programming: Tokio, async-std
Serialization: Serde
Blockchain: Substrate, ink!
Database ORMs: Diesel, sqlx,
Cryptography and security: scale, ring, rustls
GUI development: druid, iced
Game development: Amethyst, Bevy, ggez

To name a few…



Actively being 
improved and 
developed

- Regular release cycle
- Community-driven RFC process
- Focus on ergonomics, performance 

and stability
- Strong emphasis on backward 

compatibility



Cargo: Package Manager and build tool

crates.io: Package registry





That’s different 
than 

Rubygems 🤔



Syntax



A Quick Look









Type System









Memory and Ownership



Memory Management







JavaScript relies on garbage 
collection to free memory from 
previous large arrays, which may 
introduce performance overhead.

Rust deallocates memory as soon 
as it's no longer needed, providing 
efficient and deterministic memory 
management.



Ownership









Once Pac-man (i.e. 
Rust) consumes (i.e. 
owns) the ball, it’s 
no longer available



Generics



What are generics?



Generics allow writing 
flexible, reusable, and 
type-safe code 
without specifying 
concrete data types



Create functions, 
structs, enums, and 
traits that work with 
multiple data types



Why use generics?



Generics provide a way to 
achieve flexibility similar to 
dynamically typed 
languages while 
maintaining type safety 
benefits of static typing



Generics Syntax





It’s Reusable!









Continue Your Learning



Maybe you heard 
about the Rust book 
before…





Have you heard 
about the Brown 
University version?



https://rust-book.cs.brown.edu/



github.com/rust-lang/rustlings

Rustlings



Intro to Rust Course



https://w3f.github.io/w3f-education/docs/introrust



Streaming every week!



Learning Rust from

isn’t always easy



But, with the right 
resources and 
community it is 
possible!



Let’s keep learning Rust together!




