Vg OVHcloud

®

Telecon';"

" G
)] T a2t
Py - W i
1) : o, i) ¢ e Pt e P gy -
) AP B b : "o R T Y oty
<4 e 5 3 ? ? € G v s P 3
i3 : | 3 i & Q% i E
: a .] £ v o T T TR E 4] ;
ZES ﬁ. 1 AR S R 3 W £
Sos SHEERY 3 1 (5s, . s o e RS - 33
" al : ! oy L oS = . (1t

1009% OPEN SOURCE - Conférences et Workshops

Server-side WebAssembly

Horacio Gonzalez
2021-06-24

\

V4 OVHclowd 3 3

| ¢
e

SaphiaC

Telecom®
valley

|

Who are we?

Introducing myself and
introdcing OVHcloud

V4 OvHclowd

Horacio Gonzalez séiphiaConf

Telecom™®
valley

@LostinBrittany

Spaniard lost in Brittany,
developer, dreamer and
all-around geek

= Finist :
| Devs té &

DevFest du
Bout du Monde

Google Developers
) /4 Experts

Web Technologies
GDE

Flutter

V‘ OVHcloud ,,

OVHcloud: A global leader

Web Cloud & Telcom

B

Private Cloud

(Z7) Public Cloud
Storage
N :
' Network & Security

V4 OVHclowd

30 Data Centers
in 12 locations

34 Points of Presence
on a 20 TBPS Bandwidth Network

2200 Employees
worldwide

115K Private Cloud
VMS running

300K Public Cloud
instances running

380K Physical Servers
running in our data centers

it

Telecom®
valley

1 Million+ Servers
produced since 1999

1.5 Million Customers
across 132 countries

3.8 Million Websites
hosting

1.5 Billion Euros Invested
since 2016

P.U.E. 1.09
Energy efficiency indicator

20+ Years in Business
Disrupting since 1999

 @LostInBrittony -

SOphiaConf

Telecom ®
valley

Did | say WebAssembly?

Wasm for friends...

WebAssembly, what's that? | S:‘t‘)‘:phla;:@nf

Telecom ®
valley

A4 OVHcloud s S e |

|4
= -
\ N

A low-level binary format

VJ QVHC(QUG

S
3

%
w&m

SR LT Aok Ay

"

.

il o
o

g’*mw
2 %
¥
i
Fevmatma

i
g
3
i

3

S
£

'_;r:
&
,-rr
; } e

RN

S
I
1

3
&
%

i
v

3
'."‘-(v?.oé i

obbe

1 A T A RS FTD X A

{
%
3

R Y T ”‘g
3 . 3

?-M

3 :
:

-

S 5 BN TR 5 S

Telecom™®
valley

That runs on a stack-based virtual machine S@phiaConf

Telecom™®
valley

£
%
x
¥
£
3
5
3
1
z
|
%
“iy

e T L PRAEL A

ceco

nede

PN AT R WA it 0 OO S YR O i 5 o

- Ll
B AL O S A R TN A RN (L i v 37‘&.‘;‘&_.'- "

A portable binary format that runs on all modern browsers... but
also on NodeJS and elsewhere!!

© @LostInBrittang LB

V4 OvHclowd

"o
8
-

valley

Teleco

SWadrmc
rk.‘t
AT AT S
*
vt
K2
£
ok

i
e Y
3 e
¥
7% %
4 X3
- ¥
SO A e U7

th several key advantages

Wi

But above all... SiophiaConf

Telecom ®
valley

Wasm is not meant to replace JavaScript
A4 OvHcloud @LostInBrittany |

Who is using WebAssembly today? ‘SiphiaConf

Telecom ®
Valley

Telecom™®
Valley

A bit of history

Remembering the past
to better understand the present

emscripten

Y7 QVHC(QUd N i R A R

Executing other languages in the browser S?@phiaConf

Telecom ®
valley

A long story, with many failures...
R A \”’i.as't,"ifﬁérzttw X

VJ QVH{:(QUQ e

2012 - From C to JS: enter emscripten SOphiaConf

Telecom™®
Valley

¢
{
§
i
4
!
3
§
§
i

4
é

-

B3 cmimn, aimomny

| CLANG:

e, <y O iy WD opoa—

]
N W A At NN .

€ 7
&
B A i B O A

 _——

e L TR 4

Wi QVHC(QUd DR A R s

2013 - Generated JS is slow... SophiaCor

Telecom™®
valley

» W AR SO S O
»

% k%

I«--—'n-w.w - I O I i A e @ PO AN B TN P DR e MR o A g T T RS S RN wip 2 %;_”_&:x
! 7%, t i 4 7*, T} t 3‘ 3
§ k-,fius { i § k;zs t H 3 3
4 % >t)
p - £ B b £ 3 {
L C = :_c;mr |l yM| 2 |] emscripten | w» agm is |

I ! ¥ 4 &
§ : : % | § : | !
Lﬂ’ - e Ji ; . o~ PR MR N OGN L“‘ G bnbr oy v J‘ ® 2ot v o gy Y Py (R I AN Py uj p

Let's use only a strict subset of JS: asm.js
Only featu res adapted to AOT optlmlzatlon

M4 OvHclowd @UostInBrittany 411

WebAssembly project ‘SséiphiaConf

Telecom ®
Valley

moz:lia

SO-phiaConf

Telecom™®
valley

Server-side WebAssembly

Too good to not to use it

Wi QVHdQud AN A R

Solomon on Web Assembly

.a"
T@le‘;:o’rlngﬁ
vaiie
"2 Solomon Hykes , y
@solomonstre

If WASM+WASI existed in 2008, we wouldn't have needed to
created Docker. That's how important it is. Webassembly on
the server is the future of computing. A standardized system
interface was the missing link. Let's hope WASI is up to the
task!

© Lin Clark @linclark

WebAssembly running outside the web has a huge future. And that future
gets one giant leap closer today with...

¥) Announcing WASI: A system interface for running WebAssembly
outside the web (and inside it too)

hacks.mozilla.org/2019/03/standa...

9:39 PM - Mar 27, 2019 oy

Q 19k QO 792 people are Tweeting about this

__ vm%d A ——— legaw

Solomon on Web Assembly Sao:phiaCoi

V4 OvHclowd

i
Telecom*™
valley
"2~ Solomon Hykes J

% @solomonstre

“So will wasm replace Docker?” No, but imagine a future
where Docker runs linux containers, windows containers and
wasm containers side by side. Over time wasm might become
the most popular container type. Docker will love them all
equally, and run it all ©)

wdy Solomon Hykes @solomonstre

If WASM+WASI existed in 2008, we wouldn't have needed to created
Docker. That's how important it is. Webassembly on the server is the future
of computing. A standardized system interface was the missing link. Let's
hope WASI is up to the task! twitter.com/linclark/statu...

4:50 AM - Mar 28, 2019 &

Q 142 O 52 people are Tweeting about this

 @LostInBrittany |

A very interesting feature set SOphiaCor

Telecom™®
valley

L _ Emsuiptcn \
{ {
r— « B'norqen _\

: e ‘i% { 3"’; o> ;“ "": S":l. (Em R] £ E 4 »
i { -ﬁ- £ | 4 T
— "

1
;' £
Com?dert | pl]
“' p o

Rust| o

3 ¥y 4 % i A _
— 3 3 v § % 3§ i —
S SR

\
L =
=
€,
»*

WHY ONLY FOR THE WEB ¢¢

& #

Wi QVHc(c:ud

Telecom™®
Valley

Features of Wasm
Why is everybody looking at it?

i

| :

3 g

X }
5 p

E

Y7 QVHC(QUd N i R A R

Near native speed SnphlaC@nf

s : . ﬁ
Time normalized to rust-native latest Te’ecom
9 valley
| wasmer-dynasm latest @ local-machine-1
8 . M wasmer-llvm latest @ local-machine-1
| wasmer-clif latest @ local-machine-1
Il wasm-c-api-v8 7.4.288.11 @ local-machine-1
71 M rust-native latest @ local-machine-1
~ 61
(7]
o
et
()
a g |
4
&
= 4
2
I
X 3
2
1
0 -

fannkuch fibonacci nbody sha1

httos //medlum com/wasmer/benchmarklng Webassemblv runtlmes 18497ce@d76e

" @LostTnBrtteny

https://medium.com/wasmer/benchmarking-webassembly-runtimes-18497ce0d76e

Highly portable ‘StiphiaConf

Telecom ®
valley

It can be run almost everywhere...
' | DRI @LostInBrittany 41

\d OvHclowd

Readable and debuggable S:OphiaConf

Telecom ®
valley

(WAT)
ba

Each .wasm file with it . wat companion file
4 OvHcloud @imtlngrzmﬁy

Memory safe & secure siphiaConf

Telecom™®
valley

Running in a fully sandboxed environment

M4 OVHcloud

Accepting many source languages s phiaConf

Telecom ®
SR valley

e
4 1%,
;4' & 5
& z
% o £
% 3 ¥
C Tt x
|
X 5
1 &
% ¥
Y R N Lv.\j.;;:‘sv»y.“.m,&v#
f‘t&'; ES
i %

S e
{
5
&
¥

L i
. g
£

e
- 1
2
A AN AT NG DN N A G S

6 s By AN

i
§
3

oy
E— WO

9
T

g*‘*»'mwn.s;mmywe %
- &
z ’

P OvHoiood . "

v g [-_ -
X § X g AN T
4 79 _ fj' i

Teleco,ﬁ‘%
Valley

Still a young platform...

But growing up fast!

Wi QVHC{QUd Rt ,f

VA . P -
SO:phiaConf
X 2hs B B

Native WASM types are limited

Teleco’rlﬁ’g
WASM currently has four available types: Valley

e 132:32-bitinteger
164: 64-bit integer
£32:32-bit float
164 64-bit float

Types from languages compiled to WASM
are mapped to these types

M#OvHclowd ~ @LostInBrittany 1\

How can we share data? SphiaConf

Telecom®
valley

Using the same data in WASM and JS?
Shared linear memory between them,
and serializing the data to one Wasm types

V4 OvHcod " @LostInBritteny

Solution is coming: Interface types SophiaConf

Telecom™®
valley

Beautiful description at:
httDs //hacks m02111a 012/2019/08/webassemblv 1nterface types

V‘ QVHC{QU(} | bt . | Al ‘@"LGStIh.ghtt#’gg i\}@

\ N

https://hacks.mozilla.org/2019/08/webassembly-interface-types

No outside access saphiaConf

Telecom ®
valley

By designh, communication is done
using the shared linear memory only

V4 OVHcloud

Solution exists: WASI ‘Stiphia

i’ﬂ Wasmer
Vd OVHcloud

.

Telecom ®
valley

WASI

The WebAssembly System Interface

WASI is a modular system interface for WebAssembly. As described in the initial announcement, it’s focused on

security and portability.

WASI is being standardized in a subgroup of the WebAssembly CG. Discussions happen in GitHub issues, pull
requests, and bi-weekly Zoom meetings.

For a quick intro to WASI, including getting started using it, see the intro document.

The Wasmtime runtime’s tutorial contains examples for how to target WASI from C and Rust. The resulting .wasm
modules can be run in any WASI-compliant runtime.

For more documentation, see the documents guide.

‘@LostInBrittany

Mono-thread and scalar operationsonly ~ S@phiaConf

Telecom ®
valley

Not the most efficient way...

ists: SIMD

Solution ex

SophiaConf

“a
]

|
valley

Teleco

Solutions are coming too: Wasm Threads ~ S@phiaConf

Telecom™®
valley

B P T TSR ST R e
3

&

“
E

Charad ineaner M
SNAres Lanear iegmory :
-c*"’*"‘i

H
n-.\}-‘ﬁ'wmtmxm}&»s;(R T P
e 3 ’ %

B ARINGTT SR Wt 14 N -':‘
%
3

ZROLTLOTIN S S R il L 2L R m&ﬁl’»‘-ﬁ-h(ﬂ#

4 2 . : &
; i ;¢
-1 3 7 3 f ¥
S 7 3 5 :
4
< 3 = §
9 1 d

Threads on Web Workers
with shared linear memory

V4 OvHclowd

Incoming proposals: Garbage collector saphiaConf

Telecom®
valley

pepr o e e ‘ ‘ | :
S s J"‘*-t:ﬁ.gia;\-s. ¥
‘ B

N
A

: %

a4 4 :
' S

‘Sv,“ ’Q,;Ee! ,'& §1

zwr_a«l{fiw- AR L sy -Wﬁ‘&;’**’wwmmfm W

RN,
.;'f .

And exception handling
4 OVHcloud

SO-phiaConf

Telecom®
valley

The Bytecode Alliance
Taking WASM out of the browser

- BYTECODE

s »o ALLIANCE

M@ OvHdlowd @LostInButteny AT

The Bytecode Alliance 5"‘3"2Phia§§nf

Telecom ®
Valley

=2 BYTECODE

moz://a fastly

W QVH{:iQu:} Rt s T — |

“m

=

SiphiaConf

ects

lance proj

Bytecode All

=
valley

Teleco

th m;g

¥
e

‘@LostInB:

=
B
o
>
=
w v

Wasmtime saphiaConf

L

Telecom™®
valley

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
println!("Hello, world!");

i
and compile/run it with:

$ rustup target add wasm32-wasi

$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm

Hello, world!

v‘ QVHE(QU{} = —— ngtlhgrttaw _

Cranelift

Telecom™®
valley

Cranelift Code Generator

A Bytecode Alliance project

Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine

code.

+ l docs 0.66.0

[Slll o Fuzzit Status

For more information, see the documentation.
For an example of how to use the JIT, see the SimplelIT Demo, which implements a toy language.

For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using
Cranelift.

Status

Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute
WebAssembly MVP functions, although it needs to be used within an external WebAssembly embedding to be part of a complete
WebAssembly implementation.

The x86-64 backend is currently the most complete and stable; other architectures are in various stages of development. Cranelift currently
supports both the System V AMDG64 ABI calling convention used on many platforms and the Windows x64 calling convention. The performance
of code produced by Cranelift is not yet impressive, though we have plans to fix that.

The core codegen crates have minimal dependencies, support no_std mode (see below), and do not require any host floating-point support,

and do not use callstack recursion.

v’ QVHMQUG T ngtj{ﬁgfttaw _

nf

SO-phiaCc

L

WebAssembly Micro Runtime (wamr)

"
WebAssembly Micro Runtime Telecom*™
valley

Build WAMR VM core | Embed WAMR | Export native function | Build WASM applications | Samples
A Bytecode Alliance project

WebAssembly Micro Runtime (WAMR) is a standalone WebAssembly (WASM) runtime with a small footprint. It
includes a few parts as below:

e The "iwasm" VM core, supporting WebAssembly interpreter, ahead of time compilation (AoT) and Just-in-Time
compilation (JIT)

e The application framework and the supporting API's for the WASM applications

e The dynamic management of the WASM applications

iwasm VM core

key features

® 100% compliant to the W3C WASM MVP

e Small runtime binary size (85K for interpreter and 50K for AoT) and low memory usage

e Near to native speed by AoT

e Self-implemented module loader enables AoT working cross Linux, SGX and MCU systems

e Choices of WASM application libc support: the built-in libc subset for the embedded environment or WASI for
standard libc

e Embeddable with the supporting C API's
e The mechanism for exporting native API's to WASM applications
e Multiple modules as dependencies

e Thread management and pthread library

v‘ QVHC{QUG U — ngtlhgrttaw _

.]

Telecom™®
valley

Lucet

A Bytecode Alliance project

Lucet is a native WebAssembly compiler and runtime. It is designed to safely execute untrusted WebAssembly
programs inside your application.

Check out our announcement post on the Fastly blog.

Lucet uses, and is developed in collaboration with, the Bytecode Alliance's Cranelift code generator. It powers Fastly's
Terrarium platform.

(func $_start (type 7)
(local i32 i32 i32 i32)
global.get ©
132._const 16
i32.sub
local.tee ©
global.set ©
call $ wasilibc_init_preopen
332 const 3
local.set 1
block 53 label = @1

block 53 label = @2
block 53 label = @3
block 53 label = @4
loop 53 label = @5

local.get 1
local.get ©

V‘ g VHC(QUC’ ——— T T G [gtIanttm:g

Telecom™®
Valley

Other runtimes

Runtimes, runtimes everywhere

Wi QVHdQud AN A R

Wasmer S:ﬁrphiac,nf

Telecom™®
valley

Wil Wasmer

L 4 T — :
b9 T <,
[E———— Y ‘ ' A
S R ' e ANY WS
s WA .
v ' e

It et

Run any code® on any client... almost
* Languages compiling to WASM

| . vm%d N ' H,,@Qg.,gz‘aw _ |

Wasmer

Telecom ®
valley

Run or embed amﬁw%em SUper ifggléwejgﬁ‘t {m{géﬁevg
based on Wasm

Y -
WA # » P v v"v%' g'bq. 2
B AP & ‘& % %1 % . k& % Z" % g
o i A R ,‘,{f £% Y Y o 3
LR g & iQ-m % Py #) \ ;
o T R : “g‘ “k# ;

4 o A & =1

f } § 12 3 i’? ' Sk ‘
y @ wasmerio
LLyM

. fgmete ri

Singlepa O wasmmw}'wmmm

v‘ vm%d o ————— — _— \i,ggt;f,.,ghmw' .

Wasmer ecosystem SaOphiaConf

Telecom®
valley

Bt Wasmer ecosystem

e ok ﬁsgem%:s} v
?m;;f(%gﬁ Mi’l{hﬁ%ﬁ?‘ _

gxewﬁa Wax cowsay FHelg Qﬁigae ‘.Jﬁ‘é;z{%wamiﬁﬁ shell

Ex‘%‘iﬁi!’ig}n g&m in browser

v‘ QVHC({}UC} B "@.ngtI‘nBﬁttaw g

Wasmer ecosystem ‘SséiphiaConf

Telecom ®
valley

W Y ﬁaﬁm ﬁi’}‘y
Lo ﬁ:ﬁ{;ijl@ﬁﬁ“

V4 OvHclovd

Wasm3 SophiaConf

L

.
M Wwasm3 VeSS Telecom™®

Wasm3 v0.4.6 on i0S (arm64-v8a)

Build Feb 7 2020 21:48:53 Va’ley

Device: iPhonel®,4

@ wapm v0.4.7 M) tests failing Loading WebAssembly...

Running fib(40) on WebAssembly...
X . . . Result: 102334155
A high performance WebAssembly interpreter written in C. Elapsed: 4844 ms

Running fib(40) on Native C...

~ 8x faster than other known wasm interpreters Result: 102334155
Elapsed: 611 ms

~ 4-5x slower than state of the art wasm 3JIT engines

~ 12x slower than native execution

* Based on CoreMark 1.0 benchmark. Your mileage may vary.

twitter 513 discord |6 online | ‘® telegram chat
Status

wasm3 passes the WebAssembly spec testsuite and is able to run many was1 apps.

Minimum useful system requirements: ~64Kb for code and ~10Kb RAM

wasm3 runs on a wide range of architectures (x86 , x86_64 , ARM, RISC-V, PowerPC, MIPS, Xtensa, ARC32,..)and
platforms:

[} Linux, == Windows, .’ OS X, ‘ FreeBSD

& Android, @ i0S

%= OpenWRT-enabled routers

& Raspberry Pi, Orange Pi and other SBCs

{E’-} MCUs: Arduino, ESP8266, ESP32, Particle, ... see full list
O @R Browsers... yes, using WebAssembly itself!

° wasm3 can execute wasm3 (self-hosting)
LV ' s (o - ;, RN s <4 "') Wi ‘4‘

\d OVHclovd

i 2

Wasms3 saphiaConf

Telecom™®
valley

7% § s G o [¢ e ,
{‘_}Q EF 1 & Padn t‘ﬁ}*} ggf{& K?ﬂb o {?f%%}% ﬁ?j
4 ; -l sl 'mx}
o §

») wasm3/wasm3

V4 OVHcloud

And even Wasm over GraalVM! sophiaConf

Telecom ®
valley

GraalvVm ALL ARTICLES LEARN MORE

Announcing GraalWasm — a
WebAssembly engine in GraalVM

Aleksandar Prokopec | Follow \
Dec 2, 2019 - 10 min read ’ m ﬂ [se

We’re happy to announce the initial public work on GraalWasm — the

WebAssembly engine implemented in GraalVM. GraalWasm currently
implements the WebAssembly MVP (Minimum Viable Product)
specification, and can run WebAssembly programs in the binary format,

generated with compiler backends such as Emscripten.

Supporting WebAssembly expands the set of languages GraalVM can ..
execute with a whole other set of languages to the ones supported by 6 i

=y
0
gﬁ?mﬁu

GraalVM and is further step towards making it a universal platform for

programming language execution. This feature was also highly requested

by the GraalVM community and we are happy to share our first results.

V4 OVHcloud

Or in Kubernetes... SiophiaConf

-

Krustlet: Kubernetes Kubelet in Rust for running WASM Telecom®
valley

@ A4 This project is highly experimental. & 4 It should not be used in production workloads.

Krustlet acts as a Kubelet by listening on the event stream for new pods that the scheduler assigns to it based on

specific Kubernetes tolerations.

The default implementation of Krustlet listens for the architecture wasm32-wasi and schedules those workloads to run

in a wasmtime -based runtime instead of a container runtime.

Documentation

If you're new to the project, get started with the introduction. For more in-depth information about Krustlet, plunge
right into the topic guides.

Looking for the developer guide? Start here.

Community, discussion, contribution, and support

You can reach the Krustlet community and developers via the following channels:

e Kubernetes Slack:
o #krustlet

e Public Community Call on Mondays at 1:00 PM PT:
o Zoom

o Download the meeting calendar invite here

‘ vm{wd 0ttt —— \"wgg'ggawi

Telecom™®
Valley

Some examples IRL?

Like companies using these things

@& clever cloud & b [y

Y

CLOUDFLARE

Y7 QVHC(QUd N i R A R

Cloudflare Workers (FaaS) SO:phiaCes

CLOUDELARE.

.m"'
WebAssembly on Cloudflare Te’efgl%y

Workers

10/01/2018

Te'os
S
o & (2o
5

-
v

CLOUDFLARE

R

‘ VHC{GGC} U iggtgtt‘n}y

Cloudflare Workers (Faa$S)

Exploring WebAssembly Al
Services on Cloudflare Workers

10/09/2020

@ Guest Author

This is a guest post by Videet Parekh, Abelardo Lopez-Lagunas, Sek Chai at Latent
Al

Edge networks present a significant opportunity for Artificial Intelligence (Al)
performance and applicability. Al technologies already make it possible to run
compelling applications like object and voice recognition, navigation, and

recommendations.

Al at the edge presents a host of benefits. One is scalability—it is simply impractical
to send all data to a centralized cloud. In fact, one study has predicted a global scope
of 90 zettabytes generated by billions of loT devices by 2025. Another is privacy—
many users are reluctant to move their personal data to the cloud, whereas data

processed at the edge are more ephemeral.

When Al services are distributed away from centralized data centers and closer to the
service edge, it becomes possible to enhance the overall application speed without
moving data unnecessarily. However, there are still challenges to make Al from the

deep-cloud run efficiently on edge hardware. Here, we use the term deep-cloud to

Ve OVHclowd

-
Telecom®™

Let's build a Cloudflare Worker
with WebAssembly and Haskell

10/06/2020

@ Cristhian Motoche
This is a guest post by Cristhian Motoche of Stack Builders.

At Stack Builders, we believe that Haskell's system of expressive static types offers
many benefits to the software industry and the world-wide community that depends
on our services. In order to fully realize these benefits, it is necessary to have proper
training and access to an ecosystem that allows for reliable deployment of services.
In exploring the tools that help us run our systems based on Haskell, our developer
Cristhian Motoche has created a tutorial that shows how to compile Haskell to

WebAssembly using Asterius for deployment on Cloudflare.

What is a Cloudflare Worker?

Cloudflare Workers is a serverless platform that allows us to run our code on the edge
of the Cloudflare infrastructure. It's built on Google V8, so it’'s possible to write
functionalities in JavaScript or any other language that targets WebAssembly.

WebAssembly is a portable binary instruction format that can be executed f© ‘in a

memory-safe sandboxed environment. For this reason, it's especially use taskst

Fastly works on the edge of the cloud

Edge compute - (N

technology -

Give your developers an edge

Extend the power of your core cloud to the edge, and empower o \ X g s -
your teams to innovate. By moving data and applications as close to

Telecom ®
valley

your end users as possible, you can deliver fast, highly personalized

experiences to customers around the world. And now you can join
the private beta for Compute@Edge, our new serverless compute

environment built to take you further at the edge.

Wi QVHK(Qgg AR -

Fastly works on the edge of the cloud

Serverless Compute Environment

Compute@Edge is the next generation of serverless computing. It combines the best in emerging
technology to give developers unmatched power, scalability, security, and speed at the edge.

WebAssembly We built Compute@Edge on WebAssembly, a technology we’ve
. been collaborating on with the Bytecode Alliance. WebAssembly is
5 ;'»3 uniquely suited to empower developers to write code in their
& W el o B & - preferred language, then run that code anywhere at near-native
. - S ', : Ny speeds.

V‘ QVHC({}Ud B —— '@'ngt;{ngrgmw

Clever Cloud Faas infrastructure SophiaConf

Telecom™®
valley

WEB ASSEMBLY (WASM)

clever cloud
httos://Www;voutube.com/watch?v:wchehMISUSO

__ vm%d I — , R ‘:‘\bigg.ihggaw. g

https://www.youtube.com/watch?v=wchehMIsu80

Clever Cloud FaaS Infrastructure sophiaConf

Telecom™®
valley

clever cloud

Already used in internal projects
Able to execute complex loads
(neural networks models)

V4 OvHclowd

Clever Cloud FaaS Infrastructure

le chargement directement depuis le site original
- P/ S - IR | —
< 200 e
au travers du faas
<> . ° —
=

on met 130ms a la premiere requéte, parce qu'il faut boot la VM (9ms), la fork (1.5ms), puis

etablir [a connexion TLS au backend v
& clever cloud

V4 OvHclowd

4 14 o FRR : | g
4 fa . v

Clever Cloud FaaS Infrastructure

le site complet:

4
Talncmarna @

le site complet au travers du faas:

Name

en gros, 260ms de plus sur le DomContentLoaded, 300ms de plus sur le load
sachant que mes VM s'executent sur un seul thread, j'ai pas parallélise

Blazing fast

V4 OvHclowd

W clever cloud

SiophiaConf

Telecom ®
valley

That's all, folks!
Thank ou all!

aaaaa

abonga S | JSA-H
—_— daﬂkﬂmii?jh'ﬁ“ - {BSekkir oderim =

o+
= dete i ‘“mﬂﬁhﬁhakkﬂmm :

dgku,. "”‘““'”““””” kopkiur k[as;”jl(l raibh 0 maith agal
uhngd 2l

E° njstie PUDES it (]47216 aﬂualﬂ = dakU]em trgarez

nann g,
N
P "
(@)
g0

koszonom

<2 _fiyala
mauru

hayarlalaa nandri

akun dankon €CI

nkosi

N gracie

E mshamits fahmel -3 "G dhanyaradagely o ik = § epen

(ST N = /1/\]L mmome[cl =]
Wi QVHC(QU{} o : i e

