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HOW MORE MEANINGFUL CODE CAN MAKE YOUR PROJECT MORE RESILIENT & MAINTAINABLE
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ITHE TYRANNY OF STRUCTURELESSNESS

Whats sne on apout? Elixir doesnt have GOTOs..
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ITHE TYRANNY OF SITRUCTURELESSNESS
BROOKLYN ZELENKA, @EXPEDE

Cofounder/CTO at Fission

https://fissioncodes
Make DevOps & Backend obsolete &
spending alot of time with IPES, DIDs, CRDTs
- Wantto hear more? Berlin FP online meetup June 2
PLI & VM enthusiast

Prev. Ethereum Core Developer

Primary author of Witcheraft suite & Exceptional

. Thisis a version of CodeBEAM Amsterdam 2019 keynote % fission

- Whova app for Q8A afterwards
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THE BIG IDEA
QUESTIONS

We want more type of features over time
As a result, complexity grows at an exponential rate

How do you make Elixir code
more flexiple and easler to reason about at scale’

D0 you think that the patterns we use today are
the best possible patterns for software?

How Wil you write code In 2025, 2050, and 20507
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" Generalization of
nexagonal/12-factor



N THE LARGE
PROP + MODEL TEST

_ase, async: true
”ruﬂﬁwtﬂgg

property do
check all list a <- list of
list b <- 1list of

list ¢ <- 1list of

list a ++ list b
list a ++ (list b
ab ¢ == a bc




1 AR P i ""«i A‘&

.u-i-.-q.i-whnﬁidq-bﬁqn--.-- CTL LA LD T .u---n.---qnqqq-;..‘-"gbvg_”, s TP
7 - ¥ A\ g : St . » e A " | o ‘ y . )
- . o

. 4 d : ' =

T S

L LR T

o &

.




GOTOSs CONSIDERED HARMREUL

WHAT S S0

S A

A

SOU T HAVING CONT

ROLY ¥ X



GOTOS CONSIDERED HARMFREUL
WHAT'S SO BAD ABOUT HAVING CONTROL? § <t

- GUIT0s

- Low level Instruction

- Literally now the macnine Is going to see it
- Extremely flexible

- Highly concrete

- Huge number of implicit states



GOTOSs CONSIDERED HARMREUL

WHAT & S50

. G0OT0s

S A

. Low level Instruction

- Literally now the machine is going to see it

- Extrermely flexible

- Highly concrete

A

SOUT HAVING CONT

ROL? ¥ =

Line ]

Line 2

Line 3

Line 4

Line 5 — GOTO

- Huge number of implicit states

Line 6




GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? § <

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

| Line 4
- Extrermely flexible

Line 5 — GOTO

- Highly concrete

- Huge number of implicit states




GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? ¥

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

Line 4

- Extrermely flexible
Line 5 — GOTO

>

- Highly concrete

- Huge number of implicit states



GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? ¥

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

| Line 4
- Extrermely flexible

Line 5 — GOTO

- Highly concrete

- Huge number of implicit states
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GOTOSs CONSIDERED HARMREUL

STRUCTUR

- Subroutines
- Loops
- Switch/branching

. Named routines
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. Functions

- Map
. Reduce

. Fllter

. Constraint solvers
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GOTOSs CONSIDERED HARMREUL

ITRADEOFFS

- Exchange granular control for structure - Spectrum

= Meaning over mechanics -~ Turing Tarpit

- More numan than macnine -~ Church Chasm

. Safer! . Haskell Fan Fiction
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1. Eachstepisvery simple
2. Reasoning about dynamic organisms is hard

1. Remember to store your
data for crash recovery

2. Called collaborator may not be there
5. Complexity grows faster than linear

4, Find common factors — your abstraction



COMPLEXITY
ACTOR ABYGSS e

¥, Glucose

R Lactate
A t

Triose-P P NAD D @/dhA
h . . ‘ NADER NADKH NAD* rxj(/:\oqu+
I Eacnsteplisvery simple

HCOOH
PYKA Pyruvate aceEF
® 2 NAD*
Cytbl( ed) Citins pfiB
ackA A/ @ aonE
C Ethanol

2. Reasoning about dynamic organisms is hard

| Acetate

1. Rememper to store your |

Oxaloacetate

data for crasn recovery 7\/,

Acetyl-CoA

Malate

2. Called collaborator may not be there f 'g\’g Citrate — L
fumABC
S— Glyoxylate - aanX
3. Complexity grows faster than linear o o et .
@1iascp ) \>MABCP caal 0T
AD* NADPH

Succinate

4, FIind common factors — your abstraction 2-Ketoglutarate <
sucDC @ sucAB
IpdA
,P;x‘ %’NADH
Succinyl-CoA

~P CO
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9

RITHOGUONA

COMPLECTING

Structures: 4
Results: effectively limitless
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ABSTRACTION & DSLS
COMMONALITIES

- They clearly have a similar structure

- NOT equally expressive

- Enumerable

-~ Always converted to LisTt

- Witchcraft.Functor
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COMMONALITIES

Different, but also have similar structure

Not very pipeable because 2 patns

.lots of duplicate code

- Why lImit to only to two ways?
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ABSTRACTION & DSLS
SITART FROM RULES

. Descripe what the overall solution looks like — "front end’ interface

- Choose how It gets run contextually — "back end’ runner
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- Fallback keys

- Bang-functions
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- Compositionis at the heart of modularity
def get(map, key, sGefaaie -\ il
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- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition %Sa- |> Map.get

. )

. Lets apbstract default values! dof fa1lback  default), do: default
def fallback(val, : : value

%sa: |> Map.get(: |> fallback

|> List.first |> fallback
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- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition v - > Map.get(:b,
- Lets abstract default values def fallback , default), . default
def fallback(val, : : value

- More focused (does one thing) y > Map.get |> fallback

|> List.first |> fallback
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ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition v - > Map.get(:b,

- Lets abstract default values def fallback , default), . default
def fallback(val, : : value

- More focused (does one thing S > Map.get(:b) |>ESTIBSER

- More general (works everywnere) 1> List.first() |>(fallback

. Ad hoc Tunction extension
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error = SafeMap.fetch(%fa: 1%,
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use Exceptional
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error = [SafeMap.fetch(%fa: 1%, :

~‘3ensure! X

from foo/




ABSTRACTION & DSLS

M P

Apstracted out

foo! /x*

ROVING Kernel —

S ANG

o dMap.fetch! (%{a: 13}, :

use Exceptional

-FUNCTTONS

error = [SafeMap.fetch(%{a:

*‘Qensure! X

from foo/

value = SafeMap.fetch(%{a:
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Apstracted out

foo! /x*

ROVING Kernel —

S ANG

o dMap.fetch! (%{a: 13}, :

use Exceptional

-FUNCTTONS

error = [SafeMap.fetch(%{a:

*‘Qensure! X

from foo/

= SafeMap.fetch(%{a:

~> (&(&1 + 1)

~> (&(&1 + 1)




ABSTRACTION & DSLS
IMPROVING Kernel — BANG FUNCTTONG

@ d Map.fetch!(%{a: 13}, :

use Exceptional

error = [SafeMap.fetch(%{a:

Abstracted out
foo! /* fromfoo/*

¥ densure! (x
value = SafeMap.fetch(%{a:
~> (&(&1 + 1)
~> (&(&1 + 1)

>>> (&(&1 + 1)
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IMPROVING Kernel — BANG FUNCTTONG

P llap. fetch:(hia: 13, b, _ . Works everywhere
use Exceptional Any data

ANy error struct

Any flow (esp. pipes)

Super easy to test

error = [SafeMap.fetch(%{a:

Abstracted out
foo! /* fromfoo/*

*‘Qensure! X

= SafeMap.fetch(%{a:

~> (&(&1 + 1)

~> (&(&1 + 1)

>>> (&(&1 + 1)
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MPROVING Kernel — BANG

g dMap.fetch!(%{a: 1%, :

use Exceptional

-FUNCTTONS

error = SafeMap.fetch(%fa: 1

Abstracted out
foo! /* fromfoo/*

-‘lensure! X

= SafeMap.fetch(%fa: .

~> (&(&1 + 1)
~> (&(&1 + 1)

>>> (&(&1 + 1)

WOrks everywnere
Any data

ANy error struct

Any flow (esp. pipes)
Super easy to test

BONUS
Disambiguate
between nil value
and actual errors
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1. Your code read like a story

2. We even see this In hign-level goals of (e.g) Phoenix

3. Go make some DSLS!
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COTI
1. Your code read like a story I> route
> parse
2. We even see this in nigh-level goals of (eg) Phoenix I s model

3. Go make some DSLs! I > view
| > render
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€100

) IN

%

A C

-o 1= GUO

- GenServer & co are actually pretty low level

. Add some semanticsl

. Don'treinvent the wheel every time %

- Letslook at a very common example
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- SYNCH

==y

RONOUS CAS

| “'  KEWW@LUE’ for: Map
O
, do: %

SACK

db, value), do: Map.get(db, value,
db, key, value), do: Map.put(db, key, value

chot_ found




SIGHTING GenSoup
ASYNC CASE — UNDERLYING MECHANICS

lefmodule ProcDB dc
use Agent

:pid

starter), do: Agent.start link(fn -> starter end

def pid, key) dc
Agent.get pid, fn state -> KeyValue.get(state, key) end

en L

lef pid, key, value) do
Ag@nt update(pid, fn state -> KeyValue.set(state, key, value)

4L‘

S
a) L“.‘




SIGHTING GenSoup
ASYNC CASE — IMPLEMENTATION (BACK END)

%ProcDB{pid: pid}, key), do: ProcDB.get(pid, key
%ProcDBipid: pid};, key, value), do: ProcDB.set(pid, key, value
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SIGHTING GenSoup
WHAT DID WE Ge 7

- Common interface
- Encapsulate the detall

- Dont have to think about mechanics anymore
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POWER UP
- XPLICITT ASSUMPTIONS

- Parallel pipes

. Concurrency = partial order

O » O
- Monotonic
» »
- Properties e o
. Serlal composition ¢ ¢
O » O

- Parallel composition

- Explicit evaluation strategy
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|
|
fn z -> z end) |
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fn x -> x / 5

unsplit

X oy
YWY

M;
X o
VY

AN
(Xoy)oz

|
|
fn z -> z end) |
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fn x -> x / 5 end

fny ->y +

—

[

fn z -> 7z end

unsplit

unsplit

a, b) ->

i tr __ N '- -_:  .adl 82 y

round(&1
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POWER UF
CARRIER DATA

split: |
left: fn x -> x / 5 end,
right: ‘
node: fny -> vy + 1 end,
left:
node:
left:
right : BERNZ=SRZNahd

with: fn (left, right) ->

with: &§String.at(§2, round(&1))
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CARRIER DATA

%Unsplit
split: BSpEl

left: X —=-> X M
right:

nhode:

left:

node:
left: &

right:“

with:

with:
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POWER UF
ASYNC BACK END

:value

1nput

value: 1nput

Va .L ue: vd —IL Le

a : b : by:
value: combine(
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- Higher semantic density (focused on meaning not mechanics)

. Declarative, configurable data flow &

. Extremely extensible
e defimpl Dataflow, for: %Streams §

e defimpl Dataflow, for: %Distributeds ¢

e defimpl Dataflow, for: %Broadways 3

. Moael-testanple

. Composable with other pipes and change evaluation strategies



A CA

= A




A CA

= A




A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err




A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

No Effect (Afterwards)

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err




A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err




A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

R0OG

RAMMING

exploding
dangerous
bad

mightfail

err ->_handleOrReport(err




A CALL FOR LIBRARIES

o> U

:3

B

RISING NUM

= U

ACTO

<O

val

rask.async(fn ->

I0.1inspect(val)

= fn (inner_val) ->
Task.async(fn ->
I0.1nspect(1inner_val

bar(val +




A CALL FOR LIBRARIES
SURPRISING NUMBER OF FACTORS b bt -sgli

[ask.async
I0.1nspect(val)

= fn (inner_val) ->
Task.async(fn ->
I0.1nspect(1inner_val

bar(val +

Log

Program



A CALL FOR LIBRARIES
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ask.async
0.1nspect(val

= fn (1nner_val) ->
[ask.async ->
I0.1nspect(1inner_val

Program
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SUMMARY
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1. Protocols-tor-DDD

2. Addasemantic layer

5. How do you locally test your distributea system? Look at the properties
4, Under which conditions does your code work? Whnat are your assumptions?
5. Prop testing Is useful for structured abstractions

0. You should be able to code half-asleep
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