- N “\. -
SE N
bl Bt RN . 9

. , " .— .- »
_Tmra y 3 "-' -
i - :
~ ‘) - .‘J o
"’ . » » - b . ! '//. . — . : ,‘3‘ N -

-

HOW MORE MEANINGFUL CODE CAN MAKE YOUR PROJECT MORE RESILIENT & MAINTAINABLE

ITHE TYRANNY OF STRUCTURELESSNESS

-0r a numper of years | have been familiar with the observation that the
quality of programmers Is a decreasing function of the density

of GOTO statements \n (he programs they produce

EDSGER DIJKSTRA

ITHE TYRANNY OF STRUCTURELESSNESS

-0r a numper of years | have been familiar with the observation that the
quality of programmers Is a decreasing function of the density

of GOTO statements n the programs they produce

EDSGER DIJKSTRA

A . i ;
y) b & &
. r] .
. , ¥
3 ’ /
. ; ' .
& ‘ - -
-

»
4

i
*

ITHE TYRANNY OF STRUCTURELESSNESS

Whats sne on apout? Elixir doesnt have GOTOs..

L Jp—

=)

THIS AUDIENCE

THE TYRANNY OF STRUCTURELESSNESS
ROOKLYN ZELENKA, @EXPEDE

23 fission

ITHE TYRANNY OF SITRUCTURELESSNESS
BROOKLYN ZELENKA, @EXPEDE

Cofounder/CTO at Fission

https://fissioncodes
Make DevOps & Backend obsolete &
spending alot of time with IPES, DIDs, CRDTs
- Wantto hear more? Berlin FP online meetup June 2
PLI & VM enthusiast

Prev. Ethereum Core Developer

Primary author of Witcheraft suite & Exceptional

. Thisis a version of CodeBEAM Amsterdam 2019 keynote % fission

- Whova app for Q8A afterwards

S

THE BIG IDEA
ONE-LINE

IHe BIG IDEA

ON

N

& Work at a higher level 2

THE BIG IDEA
ANGUAG

- ol GN

~CITo INT

D US

IHe BIG IDEA

WHO'S O

aE

DOKS

- T HISY

THE BIG IDEA
WHO'S ORG LOOKS LIKE THIS?

i d A.d A.d

THE BIG IDEA
WHO'S ORG LOOKS LIKE THIS?

i d A.d A.d

THE BIG IDEA
HOW ABOUT THISY

THE BIG IDEA
HOW ABOUT THISY

THE BIG IDEA
QUESTIONS

THE BIG IDEA
QUESTIONS

We want more type of features over time
As a result, complexity grows at an exponential rate

THE BIG IDEA
QUESTIONS

We want more type of features over time
As a result, complexity grows at an exponential rate

How do you make Elixir code
more flexiple and easler to reason about at scale’

THE BIG IDEA
QUESTIONS

We want more type of features over time
As a result, complexity grows at an exponential rate

How do you make Elixir code
more flexiple and easler to reason about at scale’

D0 you think that the patterns we use today are
the best possible patterns for software?

THE BIG IDEA
QUESTIONS

We want more type of features over time
As a result, complexity grows at an exponential rate

How do you make Elixir code
more flexiple and easler to reason about at scale’

D0 you think that the patterns we use today are
the best possible patterns for software?

How Wil you write code In 2025, 2050, and 20507

IHe BIG IDEA

970

%

We need to evolve our approach
focus on domain and structure!

ITHE BIG IDEA

970

%

We need to evolve our approach:
focus on domain and structure!

L]

N THE LARGE

970

)

- YOU Uos

) 1O W

=1

N THE LARGE

970

)

- YOU Us

) 1O W

RITE

Imperative

N THE LARGE

GO0

ok

| X

Imperative

* Functional core,
imperative shell

N THE LARGE

GO0

ok

| X

Imperative

* Functional core,
imperative shell

N THE LARGE Imperative

5-LAYER 2

" Generalization of
nexagonal/12-factor

N THE LARGE Imperative

5-LAYER o

" Generalization of
nexagonal/12-factor

N THE LARGE
PROP + MODEL TEST

_ase, async: true
”ruﬂﬁwtﬂgg

property do
check all list a <- list of
list b <- 1list of

list ¢ <- 1list of

list a ++ list b
list a ++ (list b
ab ¢ == a bc

1 AR P i ""«i A‘&

.u-i-.-q.i-whnﬁidq-bﬁqn--.-- CTL LA LD T .u---n.---qnqqq-;..‘-"gbvg_”, s TP
7 - ¥ A\ g : St . » e A " | o ‘ y .)
- . o

. 4 d : ' =

T S

L LR T

o &

.

GOTOSs CONSIDERED HARMREUL

WHAT S S0

S A

A

SOU T HAVING CONT

ROLY ¥ X

GOTOS CONSIDERED HARMFREUL
WHAT'S SO BAD ABOUT HAVING CONTROL? § <t

- GUIT0s

- Low level Instruction

- Literally now the macnine Is going to see it
- Extremely flexible

- Highly concrete

- Huge number of implicit states

GOTOSs CONSIDERED HARMREUL

WHAT & S50

. G0OT0s

S A

. Low level Instruction

- Literally now the machine is going to see it

- Extrermely flexible

- Highly concrete

A

SOUT HAVING CONT

ROL? ¥ =

Line]

Line 2

Line 3

Line 4

Line 5 — GOTO

- Huge number of implicit states

Line 6

GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? § <

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

| Line 4
- Extrermely flexible

Line 5 — GOTO

- Highly concrete

- Huge number of implicit states

GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? ¥

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

Line 4

- Extrermely flexible
Line 5 — GOTO

>

- Highly concrete

- Huge number of implicit states

GOTOS CONSIDERED HARMFUL
WHAT'S SO BAD ABOUT HAVING CONTROL? ¥

- GOT0s

Line |
- Low level Instruction ine 2
. Literally how the machine is going to see it SRR

| Line 4
- Extrermely flexible

Line 5 — GOTO

- Highly concrete

- Huge number of implicit states

GOTOSs CONSIDERED HARMREUL

ol

~UCTU

Q

)

)

R0OG

RAMMIN G

GOTOSs CONSIDERED HARMREUL

STRUCTUR

- Subroutines
- Loops
- Switch/branching

. Named routines

)

)

R0OG

RAMMIN G

GOTOSs CONSIDERED HARMREUL

1 H

- N

- X G

- N

RATION o

GOTOSs CONSIDERED HARMREUL

IHE N

- X G

. Functions

- Map
. Reduce

. Fllter

. Constraint solvers

- N

RATION o

GOTOS CONSIDERED HARMFUL
ITRADEORFFS

GOTOS CONSIDERED HARMFUL
ITRADEORFFS

- Exchange granular control for structure
= Meaning over mechanics
- More numan than macnine

. Safer!

GOTOSs CONSIDERED HARMREUL

ITRADEOFFS

- Exchange granular control for structure - Spectrum

= Meaning over mechanics -~ Turing Tarpit

- More numan than macnine -~ Church Chasm

. Safer! . Haskell Fan Fiction

COMPLEXITY

ACTO

= A

BY 00

COMPLEXITY
ACTOR ABYGSS e

1. Eachstepisvery simple
2. Reasoning about dynamic organisms is hard

1. Remember to store your
data for crash recovery

2. Called collaborator may not be there
5. Complexity grows faster than linear

4, Find common factors — your abstraction

COMPLEXITY
ACTOR ABYGSS e

¥, Glucose

R Lactate
A t

Triose-P P NAD D @/dhA
h . . ‘ NADER NADKH NAD* rxj(/:\oqu+
I Eacnsteplisvery simple

HCOOH
PYKA Pyruvate aceEF
® 2 NAD*
Cytbl(ed) Citins pfiB
ackA A/ @ aonE
C Ethanol

2. Reasoning about dynamic organisms is hard

| Acetate

1. Rememper to store your |

Oxaloacetate

data for crasn recovery 7\/,

Acetyl-CoA

Malate

2. Called collaborator may not be there f 'g\’g Citrate — L
fumABC
S— Glyoxylate - aanX
3. Complexity grows faster than linear o o et .
@1iascp) \>MABCP caal 0T
AD* NADPH

Succinate

4, FIind common factors — your abstraction 2-Ketoglutarate <
sucDC @ sucAB
IpdA
,P;x‘ %’NADH
Succinyl-CoA

~P CO

GOTOS CONSIDERED HARMFUL
SAY O

Structured

Jnstructured

-

COMPLEXITY

GOTOS CONSIDERED HARMFUL
SAY O

Structured

Jnstructured

-

TIME

COMPLEXITY

GOTOSs CONSIDERED HARMREUL

SAY O

Jnstructured

TIME

COMPLEXITY

GOITOs CONSIDERED HARMEFUL

SAY O

AU

/

~
\/
Y

/

Jnstructurec

Structured

TIME

COMPLEXITY

GOTOSs CONSIDERED HARMREUL

HAY O

Jnstructured

» \

TIME

COMPLEXITY

9

RTHOGONA

COM

~CTING

COMPLEXITY

9

RTHOGONA

COM

O TING

COMPLEXITY

9

RTHOGONA

COM

O TING

COMPLEXITY

9

RTHOGONA

COM

COMPLEXITY

9

RTHOGONA

COM

O TING

COMPLEXITY

9

RTHOGONA

COM

O TING

COMPLEXITY

9

RTHOGONA

COM

~CTING

COMPLEXITY

9

RTHOGONA

COMPLEXITY

9

RTHOGONA

COM

~CTING

COMPLEXITY

9

RITHOGUONA

COM

O TING

COMPLEXITY

9

RITHOGUONA

COM

O TING

COMPLEXITY

9

RITHOGUONA

COMPLECTING

Structures: 4

COMPLEXITY

9

RITHOGUONA

COMPLECTING

Structures: 4
Results: effectively limitless

ON A

S5O |

RACTION &

b

ON ABoS TRACTION & DS

NOT GETTING TRAPP

i OIS N R

D

- TAILS

ABSTRACTION & DSLS

COMMONA

N

- O

ABSTRACTION & DSLS

COMMONA

N

- O

ABSTRACTION & DSLS
COMMONALITIES

- They clearly have a similar structure

- NOT equally expressive

- Enumerable

-~ Always converted to LisTt

- Witchcraft.Functor

ABSTRACTION & DSLS

COMMONA

N

- O

ABSTRACTION & DSLS

COMMONA

N

- O

ABSTRACTION & DSLS

COMMONA

N

- O

e — A
round

ABSTRACTION & DSLS
COMMONALITIES

Different, but also have similar structure

Not very pipeable because 2 patns

.lots of duplicate code

ABSTRACTION & DSLS
COMMONALITIES

Different, but also have similar structure

Not very pipeable because 2 patns

.lots of duplicate code

- Why lImit to only to two ways?

ABSTRACTION & DSLS

oA

RT

RO M

= U

ABSTRACTION & DSLS
SITART FROM RULES

. Descripe what the overall solution looks like — "front end’ interface

ABSTRACTION & DSLS
SITART FROM RULES

. Descripe what the overall solution looks like — "front end’ interface

- Choose how It gets run contextually — "back end’ runner

ABSTRACTION & DSLS
ITWO-PHAGSE

ABSTRACTION & DSLS
ITWO-PHAGSE

- Always a two-phase process
- Abstract, then concrete

- Do concretion at application boundary

ABSTRACTION & DSLS
ITWO-PHAGSE

- Always a two-phase process
- Abstract, then concrete

- Do concretion at application boundary

ABSTRACTION & DSLS
ITWO-PHAGSE

- Always a two-phase process
- Abstract, then concrete

- Do concretion at application boundary

ABSTRACTION & DSLS

M

B

ROVING Kernel

ABSTRACTION & DSLS
MPROVING Kerne

- Fallback keys

- Bang-functions

ABSTRACTION & DSLS

V]

B

ROVING Kernel —

~ALL

SACK K

- Y S

ABSTRACTION & DSLS

M P

ROVING Kernel —

~ALL

- Compositionis at the heart of modularity

SACK K

- Y S

ABSTRACTION & DSLS

M P

ROVING Kernel —

~ALL

- Compositionis at the heart of modularity

-~ QOrthogonality Is at the heart of composition

SACK K

- Y S

ABSTRACTION & DSLS

M P

ROVING Kernel —

~ALL

- Compositionis at the heart of modularity

-~ QOrthogonality Is at the heart of composition

SACK KEY S

def get(map, key, default \\

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, default \\ |

- Orthogonality Is at the heart of composition v - > Map.get

o ’ ‘

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, “Gefaait (™

- Orthogonality Is at the heart of composition v - > Map.get

o ’ ‘

. Lets apstract default values!

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, “Gefaait (™

- Orthogonality Is at the heart of composition v - > Map.get

o ’ ‘

. L ets apstract default values! dof fallback default) do: default
def fallback(val, : : value

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity
def get(map, key, sGefaaie -\ il

- Orthogonality Is at the heart of composition %a: 13 |> Map.get

. L ets apstract default values! def fallback(nil, default), do: default
def fallback(val, : : value

%$sa: 1% |> Map.get(: |> fallback(L

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity
def get(map, key, “Gefaait (™

- Orthogonality Is at the heart of composition v - > Map.get

o ’ ‘

. L ets apstract default values! dof fallback default) do: default
def fallback(val, : : value

%$sa: 1% |> Map.get(: |> fallback

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition %Sa- |> Map.get

.)

. Lets apbstract default values! dof fa1lback default), do: default
def fallback(val, : : value

%sa: |> Map.get(: |> fallback

|> List.first |> fallback

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition v - > Map.get(:b,
- Lets abstract default values def fallback , default), . default
def fallback(val, : : value

- More focused (does one thing) y > Map.get |> fallback

|> List.first |> fallback

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition v - > Map.get(:b,

- Lets abstract default values def fallback , default), . default
def fallback(val, : : value

- More focused (does one thing S > Map.get(:b) |>ESTIBSER

- More general (works everywnere) 1> List.first() |>(fallback

ABSTRACTION & DSLS
MPROVING Kernel — FALLBACK KEYS

- Compositionis at the heart of modularity

def get(map, key, sdefaait"\X

- Orthogonality Is at the heart of composition v - > Map.get(:b,

- Lets abstract default values def fallback , default), . default
def fallback(val, : : value

- More focused (does one thing S > Map.get(:b) |>ESTIBSER

- More general (works everywnere) 1> List.first() |>(fallback

. Ad hoc Tunction extension

ABSTRACTION & DSLS

V]

B

ROVING Kernel —

S ANG

-FUNCTTONS

ABSTRACTION & DSLS

M

B

ROVING Kernel —

Map.fetch! (%{

S ANG

3,

-FUNCTTONS

ABSTRACTION & DSLS

M

B

ROVING Kernel —

2 dMap.fetch! (%§

S ANG

3,

-FUNCTTONS

ABSTRACTION & DSLS

M

B

ROVING Kernel —

o dMap.fetch! (%{a:

S ANG

3,

use Exceptional

-FUNCTTONS

error = SafeMap.fetch(%fa: 1%,

ABSTRACTION & DSLS

M P

Apstracted out

foo!/*

ROVING Kernel —

S ANG

e dMap.fetch!(%{a: 13,

use Exceptional

-FUNCTTONS

error = [SafeMap.fetch(%fa: 1%, :

~‘3ensure! X

from foo/

ABSTRACTION & DSLS

M P

Apstracted out

foo! /x*

ROVING Kernel —

S ANG

o dMap.fetch! (%{a: 13}, :

use Exceptional

-FUNCTTONS

error = [SafeMap.fetch(%{a:

*‘Qensure! X

from foo/

value = SafeMap.fetch(%{a:

ABSTRACTION & DSLS

M P

Apstracted out

foo! /x*

ROVING Kernel —

S ANG

o dMap.fetch! (%{a: 13}, :

use Exceptional

-FUNCTTONS

error = [SafeMap.fetch(%{a:

*‘Qensure! X

from foo/

= SafeMap.fetch(%{a:

~> (&(&1 + 1)

~> (&(&1 + 1)

ABSTRACTION & DSLS
IMPROVING Kernel — BANG FUNCTTONG

@ d Map.fetch!(%{a: 13}, :

use Exceptional

error = [SafeMap.fetch(%{a:

Abstracted out
foo! /* fromfoo/*

¥ densure! (x
value = SafeMap.fetch(%{a:
~> (&(&1 + 1)
~> (&(&1 + 1)

>>> (&(&1 + 1)

ABSTRACTION & DSLS
IMPROVING Kernel — BANG FUNCTTONG

P llap. fetch:(hia: 13, b, _ . Works everywhere
use Exceptional Any data

ANy error struct

Any flow (esp. pipes)

Super easy to test

error = [SafeMap.fetch(%{a:

Abstracted out
foo! /* fromfoo/*

*‘Qensure! X

= SafeMap.fetch(%{a:

~> (&(&1 + 1)

~> (&(&1 + 1)

>>> (&(&1 + 1)

ABSTRACTION & DSLS

MPROVING Kernel — BANG

g dMap.fetch!(%{a: 1%, :

use Exceptional

-FUNCTTONS

error = SafeMap.fetch(%fa: 1

Abstracted out
foo! /* fromfoo/*

-‘lensure! X

= SafeMap.fetch(%fa: .

~> (&(&1 + 1)
~> (&(&1 + 1)

>>> (&(&1 + 1)

WOrks everywnere
Any data

ANy error struct

Any flow (esp. pipes)
Super easy to test

BONUS
Disambiguate
between nil value
and actual errors

ABSTRACTION

RO

=Y |

CLLING &

ABSTRACTION
STORYTELLING &

1. Your code read like a story

2. We even see this In hign-level goals of (e.g) Phoenix

3. Go make some DSLS!

ABSTRACTION
STORYTELLING &

COTI
1. Your code read like a story I> route
> parse
2. We even see this in nigh-level goals of (eg) Phoenix I s model

3. Go make some DSLs! I > view
| > render

NG GenSoup

NG GenSoup

Q& X

SIGHTING GenSoup

€100

) IN

%

A C

-o 1= GUO

A

siell

RACTIONGS

-IGHTING Gensoup

€100

) IN

%

A C

-o 1= GUO

- GenServer & co are actually pretty low level

. Add some semanticsl

. Don'treinvent the wheel every time %

- Letslook at a very common example

A

siell

RACTIONGS

SIGHTING GenSoup

A

siell

RACTION — [N

A C

RONT

SIGHTING GenSoup
ABSTRACTION — INTERFACE / FRONT END

’ ' . I
‘ sy Pt Hy
oo i !
I i U
- ™ Land .) - -
C P [' i Pr— ™
S L) . (31 L} ’ . ’
' y (N v U]) y (R
-] [LI i [1 |] i
. ' L] f [‘
o ! 1 ' v
i [| L o [l‘ Ve [=
N, Ly i oy f
W i 1y i1y '] '
N (LR - ¥ i ' 1} \ [BA - AN :
L : o i X w > { - —
s e P L e LT = s

proky
db, value
db, key, value

SIGHTING GenSoup

>N

B

- SYNCH

==y

RONOUS CAS

| “' KEWW@LUE’ for: Map
O
, do: %

SACK

db, value), do: Map.get(db, value,
db, key, value), do: Map.put(db, key, value

chot_ found

SIGHTING GenSoup
ASYNC CASE — UNDERLYING MECHANICS

lefmodule ProcDB dc
use Agent

:pid

starter), do: Agent.start link(fn -> starter end

def pid, key) dc
Agent.get pid, fn state -> KeyValue.get(state, key) end

en L

lef pid, key, value) do
Ag@nt update(pid, fn state -> KeyValue.set(state, key, value)

4L‘

S
a) L“.‘

SIGHTING GenSoup
ASYNC CASE — IMPLEMENTATION (BACK END)

%ProcDB{pid: pid}, key), do: ProcDB.get(pid, key
%ProcDBipid: pid};, key, value), do: ProcDB.set(pid, key, value

SIGHTING GenSoup

WHA T

|

W

- G

-7

SIGHTING GenSoup
WHAT DID WE Ge 7

- Common interface
- Encapsulate the detall

- Dont have to think about mechanics anymore

SIGHTING GenSoup

A

siell

RACTION =

FOCUS/

She

- NC

SIGHTING GenSoup
ABSTRACTION = FOCUS/ESSENCE

—
. gy) -
A3] "'
K i |
i T ™ "T i ‘.‘ = T
o Ui s i § S P “
’ y (R o i) ' (R
-] [LI i [1 |] i
. ' L] f [‘
o ! 1 ' v
i [| L o [l‘ Ve [=
O oy i oy f
N i o i1y '] '
. . i, -A . 1 “ i 1 ‘ ' . 4 ' ». :
N . - i . - o H - _—_—
NN g W — s eI e I R g

proky
db, value
db, Key, value

SIGHTING GenSoup
ABSTRACTION = FOCUS/ESSENCE

pro*y
db, value
db, key, value

3

U o0ON

- THING W

3

U o0ON

- THING W

4 & POWER UP &

POWER UPF

- X

B

ClT ASSUM

ST TONS

POWER UPF

- X

B

ClT ASSUM

. Parallel pipes

ST TONS

POWER UPF

- X

B

ClT ASSUM

. Parallel pipes

. Concurrency = partial order

ST TONS

POWER UPF

- X

B

ClT ASsoUM

- Parallel pipes

. Concurrency = partial order

P T TONS

POWER UPF

- X

B

ClT ASsoUM

- Parallel pipes

. Concurrency = partial order

P T TONS

POWER UPF

- X

B

ClT ASsoUM

- Parallel pipes

. Concurrency = partial order

P T TONS

POWER UP
- XPLICITT ASSUMPTIONS

- Parallel pipes

. Concurrency = partial order

POWER UP
- XPLICITT ASSUMPTIONS

- Parallel pipes

. Concurrency = partial order

POWER UP
- XPLICITT ASSUMPTIONS

- Parallel pipes
. Concurrency = partial order

. NMonotonic

POWER UP
- XPLICITT ASSUMPTIONS

- Parallel pipes

. Concurrency = partial order

O » O
- Monotonic
» »
- Properties e o
. Serlal composition ¢ ¢
O » O

- Parallel composition

- Explicit evaluation strategy

POWER UPF

- |

B

- S+ +

y
ﬁ(ﬁw

AN

NN

AN
(Xoy)oz

POWER UPF

- |

B

- S+ +

y
ﬁ(ﬁw

L\

SN

AN
(Xoy)oz

POWER UPF

- |

B

- S+ +

X Y
VY

Mb
X o
VY

AN
(Xoy)oz

|
|
fn z -> z end) |

POWER UPF

- |

B

-S4+

fn x -> x / 5

unsplit

X oy
YWY

M;
X o
VY

AN
(Xoy)oz

|
|
fn z -> z end) |

POWER UPF

)

RO TOCO

RONT

POWER UPF

C

- ANU

POWER UP

C

- AN U

fn x -> x / 5 end

fny ->y +

—

[

fn z -> 7z end

unsplit

unsplit

a, b) ->

i tr __ N '- -_: .adl 82 y

round(&1

POWER UF
CARRIER DATA

POWER UF
CARRIER DATA

split: |
left: fn x -> x / 5 end,
right: ‘
node: fny -> vy + 1 end,
left:
node:
left:
right : BERNZ=SRZNahd

with: fn (left, right) ->

with: &§String.at(§2, round(&1))

POWER UF
CARRIER DATA

POWER UP
CARRIER DATA

%Unsplit
split: BSpEl

left: X —=-> X M
right:

nhode:

left:

node:
left: &

right:“

with:

with:

POWER UF
CARRIER DATA

POWER UPF

>N

B

- CAS

SACK

POWER UPF

>N

B

- CAS

SACK

POWER UF
> M

B

- CAS

SACK

POWER UP
ASYNC

SACK

POWER UP
ASYNC

SACK

POWER UP
ASYNC

SACK

- N

POWER UF
ASYNC BACK END

:value

1nput

value: 1nput

Va .L ue: vd —IL Le

a : b : by:
value: combine(

POWER UF
UPoHOT

POWER UF
UPoHOT

- Higher semantic density (focused on meaning not mechanics)

POWER UF
UPoHOT

- Higher semantic density (focused on meaning not mechanics)

. Declarative, configurable data flow &

POWER UF
UPoHOT

- Higher semantic density (focused on meaning not mechanics)

. Declarative, configurable data flow &

. Extremely extensible
e defimpl Dataflow, for: %Streams §

e defimpl Dataflow, for: %Distributeds ¢

e defimpl Dataflow, for: %Broadways 3

POWER UF
UPoHOT

- Higher semantic density (focused on meaning not mechanics)

. Declarative, configurable data flow &

. Extremely extensible
e defimpl Dataflow, for: %Streams §

e defimpl Dataflow, for: %Distributeds ¢

e defimpl Dataflow, for: %Broadways 3

. Moael-testanple

POWER UF
UPoHOT

- Higher semantic density (focused on meaning not mechanics)

. Declarative, configurable data flow &

. Extremely extensible
e defimpl Dataflow, for: %Streams §

e defimpl Dataflow, for: %Distributeds ¢

e defimpl Dataflow, for: %Broadways 3

. Moael-testanple

. Composable with other pipes and change evaluation strategies

A CA

= A

A CA

= A

A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err

A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

No Effect (Afterwards)

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err

A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

R0OG

RAMMING

exploding
dangerous
bad

mightFa1l

err -> handleOrReport(err

A CALL FOR LIBRARIES

EXT

- N

)

<A

R OA

Happy Path (Continue)

Error Case (Skip)

R0OG

RAMMING

exploding
dangerous
bad

mightfail

err ->_handleOrReport(err

A CALL FOR LIBRARIES

o> U

:3

B

RISING NUM

= U

ACTO

<O

val

rask.async(fn ->

I0.1inspect(val)

= fn (inner_val) ->
Task.async(fn ->
I0.1nspect(1inner_val

bar(val +

A CALL FOR LIBRARIES
SURPRISING NUMBER OF FACTORS b bt -sgli

[ask.async
I0.1nspect(val)

= fn (inner_val) ->
Task.async(fn ->
I0.1nspect(1inner_val

bar(val +

Log

Program

A CALL FOR LIBRARIES
SURPRISING NUMBER OF FACTORS IS d

ask.async
0.1nspect(val

= fn (1nner_val) ->
[ask.async ->
I0.1nspect(1inner_val

Program

SUMMARY

<

- INCMITN

SUMMARY
KcelP INCMIND

1. Protocols-tor-DDD

2. Addasemantic layer

5. How do you locally test your distributea system? Look at the properties
4, Under which conditions does your code work? Whnat are your assumptions?
5. Prop testing Is useful for structured abstractions

0. You should be able to code half-asleep

Nttps:/ /T
Nttps://talk
SI_C

Nttps://too

o | HANK YOU,

S S|
T1SS)
S S|

N

O
O
O

1.C0O0
1.C0O0

1. CO0

CS
CS
CS

brooklyn@fission.codes
github.com/expede
@expede

<IN

