
ELIXIR AND PHOENIX FOR RUBYSISTS
BROOKLYN ZELENKA

TABLE OF CONTENTS

WHAT WE’RE GOING TO COVER

▸ Background

▸ Syntax

▸ Compare with Ruby

▸ Extra features

▸ Functional Programming Basics

▸ Tooling (Mix, Hex, Dialyzer, and ExUnit)

▸ A tiny bit of OTP

▸ Project layout

▸ Compare with Rails

▸ Similarities

▸ Differences

▸ Extra features

▸ Live code a simple app

ELIXIR (LANGUAGE) PHOENIX (WEB FRAMEWORK)

ELIXIR
PART ONE

ELIXIR: BACKGROUND

WHAT IS ELIXIR?

▸ Runs on BEAM (Erlang virtual machine)

▸ Developed by Ericsson

▸ Battled tested

▸ Major telecom

▸ Almost 30 years

▸ Compiled, dynamically typed language

▸ Focus on scalability, concurrency,  
and fault tolerance

▸ Functional language

▸ Immutable by default

WHAT ELIXIR IS NOT

▸ Ruby++

▸ Friendly syntax for Erlang

▸ Object-oriented

I WOULDN’T CLASSIFY ELIXIR AS A BETTER
RUBY. SURE, RUBY WAS MY MAIN LANGUAGE
BEFORE ELIXIR, BUT PART OF MY WORK/
RESEARCH ON CREATING ELIXIR WAS
EXACTLY TO BROADEN THIS EXPERIENCE AS
MUCH AS POSSIBLE AND GET SOME MILEAGE
ON OTHER ECOSYSTEMS SO I DIDN’T BRING 
A BIASED VIEW TO ELIXIR. IT IS NOT 
(A BETTER) RUBY, IT IS NOT (A BETTER)
ERLANG, IT IS ITS OWN LANGUAGE.

José Valim, Elixir’s BDFL

FP + RUBY

BUT I WANT A FAST, FUNCTIONAL RUBY!

▸ You should check out Clojure

▸ Once you get over the parentheses, the semantics are much closer

▸ Legend has it that Matz originally started Ruby as a Lisp

▸ Great community, tons of libs, Java & JS interop, and so on…

ANYWAY…

FUNCTIONAL PROGRAMMING

FUNCTIONAL PROGRAMMING: 101

▸ Data-first

▸ Explicit state rather than data hiding

▸ Limit and isolate side effects

▸ Referential transparency

▸ Composition over inheritance

▸ Expressions rather than objects & messages

▸ Everything is an expression

▸ Not mutually exclusive with OO (see Scala, Swift, and Rust)

FUNCTIONAL PROGRAMMING

WHY CARE ABOUT FUNCTIONAL PROGRAMMING?

▸ The free lunch is over

▸ Clean, maintainable systems

▸ Abstractions

▸ Even higher level code

▸ Focused on meaning and intent, rather than machine instructions

▸ Highly reusable

TYPES, TYPES, TYPES

ELIXIR IS “WEAKLY TYPED”

▸ “Weak” is technical, not derogatory

▸ Does its own type conversion as needed

▸ Nice for integers vs floats

▸ No built-in ADTs

▸ Shameless self-plug: ADTs coming soon in a lib!

▸ Type annotations

▸ @spec add(integer, integer) :: integer

TYPES OF TYPES

ELIXIR’S BUILT-IN TYPES

▸ Atoms (similar to Ruby’s symbols)

▸ :ok

▸ :foo

▸ “pid”s

▸ Integers

▸ Floats

▸ Keyword lists

▸ Binaries

▸ Characters

▸ Character lists

▸ Strings

▸ Maps

▸ Structs

▸ Dicts

TRUTHINESS

ELIXIR’S TRUTHINESS TABLE

TRUTHY FALSEY

TRUE ✓
FALSE ✓

nil ✓

“” ✓
[] ✓

anything else ✓

ERLANGISH

ERLANG’S LEGACY

▸ Transmits binary streams <<1,0,1>>

▸ OTP all the things

▸ Explicit goal to match (or beat) Erlang in terms of performance

▸ Runs pretty much everywhere

SYNTAX

RUBY

Cool stuff ahead 
module Foo

 def hello(name = nil, *names)

 case name

 when nil

 “Hello, world!”

 when names.empty?

 “Hello, #{ name }”

 else

 hello(name) + hello(names)

 end

end

Cool stuff ahead 
defmodule Foo do

 def hello, do: “Hello, world!”

 def hello([head|tail]) do

 hello(head) <> hello(tail)

 end

 def hello(name), do: “Hi, #{ name }”

end

ELIXIR

hello/0

hello/1 on lists

hello/1 on anything

pattern
matching

COMPOSITION

FUNCTION COMPOSITION

▸ Pipeline operator

▸ |>

▸ Remember “g o f” from way back in high school?

▸ Pipeline is backwards

▸ ie: The “forward”, or operational order

▸ g(f(x)) == (g o f) x == x |> f |> g

PIPELINING

THE PIPELINE OPERATOR |>

Ruby: message chaining

[1,2,3].sum.divide(5).floor

[1,2,3].sum = 6

6.divide(5) = 1.2

1.2.floor = 1

Elixir: pipe, or (forward) composition

[1,2,3] |> Enum.sum |> divide(5) |> floor

Enum.sum([1,2,3]) = 6

divide(6, 5) = 1.2

Float.floor(1.2) = 1

First argument

ENCAPSULATION & POLYMORPHISM

CLASSES VS MODULES, PROTOCOLS, AND STRUCTS

class Foo  
 def initialize(bar, quux) 
 @bar = bar 
 @quux = quux 
 end 
 
 def add  
 @bar + @quux 
 end 
end

module Bar  
 def add(a, b) 
 a + b 
 end 
end

Foo.new(1, 2).add

defmodule Foo do 
 defstruct bar: nil, quux: nil 
 
 def add(%Foo{bar: b, quux: q}), do: b + q 
end

defprotocol Mathy do 
 def add(struct)  
 def add(a, b) 
end 
 
defimpl Mathy, for: Foo do 
 def add(%Foo{bar: b, quux: q}), do: b + q 
end

defimpl Mathy, for: Bar do 
 def add(%Bar{a: a, b: b}), do: a + b 
end

Interface, not implementation {
Implementation {
Implementation {

METAPROGRAMMING

SOMEWHAT-DIFFERENT-FROM-USUAL MACROS

▸ Macros are functions that run at compile time, not runtime

▸ “Code that writes code”

▸ quote and unquote

▸ Elixir gives an AST, rather than tokens or syntax

▸ WARNING: harder to reason about!

▸ Only use when a regular function can’t get the job
done

▸ Can switch behaviours based on environment (prod vs
dev vs test)

▸ Generate large scaffolds

▸ Make cleaner code

▸ and more!

▸ Canonical “unless” example:

defmodule MyCoolUnless do 
 defmacro unless_m do 
 quote do 
 if(!unquote(clause), do: unquote(expression)) 
 end 
 end 
end

iex> require MyCoolUnless 
iex> Unless.unless_m true, IO.puts “don’t print this" 
nil

iex> Unless.unless_fun true, IO.puts “don’t print this" 
“don’t print this” 
nil

TOOLING

IEX, MIX, HEX, ECTO, DIALYZER, & EXUNIT

▸ IEx is Elixir’s IRB

▸ Mix is roughly Elixir’s Bundler

▸ Hex is roughly `gem` + RubyGems

▸ Ecto is a database interface (will see bit more in Phoenix section)

▸ Dialyzer is a static analysis tool

▸ Annotate your code with @spec to ensure that types will line up

▸ Will tell you about errors in branching paths, error handling, and so on

▸ ExUnit

▸ Built-in unit testing framework with nice `assert` syntax

▸ ex. assert response.status == 200

KILLER FEATURE: CONCURRENCY
PART TWO

CONCURRENCY

THE ACTOR MODEL

▸ Concurrency is hard

▸ Erlang/Elixir tries to make it easier

▸ Processes are “actors”

▸ Mailboxes (queue)

▸ Do something when receive a message

▸ Optionally, reply to sender

▸ Don’t be afraid to “kill your children”

CONCURRENCY

SENDING MESSAGES IS SIMPLE!

iex> a = spawn(Foo, :bar, []) <~Module, function, args 
iex> a |> send({self, {3, 2, 1}}) 
iex> flush

12 3 
:ok

CONCURRENCY + TELECOMMUNICATION = ♥

OPEN TELECOM PLATFORM (OTP)

▸ Library, framework, and much more!

▸ Debugger, databases

▸ Common patterns, including

▸ Supervisors and workers

▸ GenServer (Generic Server, behaviours for OTP to call)

▸ Sync and async

▸ Restart strategies

▸ one_for_one, rest_for_all, rest_for_one

SHORT INTERMISSION
PART THREE

PHOENIX
PART FOUR

BACKGROUND

WHAT IS PHOENIX?

▸ Server-side web framework

▸ Soft-realtime features

▸ Channels

▸ Distributed

▸ Attention to serving web APIs

▸ Well separated concerns

▸ Just hit 1.0

RAILS

SIMILAR TO RAILS

▸ MVC (and then some)

▸ Plugins

▸ Migrations

▸ EEx is similar to ERB

▸ <%= some stuff %>

▸ Path helpers

▸ Router

▸ Schema

▸ Generators

RAILS

MAJOR DIFFERENCES FROM RAILS

▸ No ActiveRecord

▸ Closer to Data Mapper

▸ Request cycle is clearer

▸ Soft real time

▸ Sockets, etc

▸ View models

▸ Schemas are kept in each model

RAILS

PERFORMANCE
▸ In Rails, a 200-300ms response time is not uncommon (without a cache)

▸ Can get that down to ~50ms range

▸ With Phoenix, we often see results in the μs (microsecond) range

▸ Hear various stats, most roughly 10-40x performance over Rails

μs

DIRECTORY STRUCTURE

mix phoenix.new awesome
awesome/  
 README.md 
 mix.exs 
 package.json  
 brunch-config.js 
 _build/  
 config/  
 deps/ 
 lib/ 
 awesome.ex 
 awesome/  
 endpoint.ex 
 repo.ex 
 node_modules/ 
 priv/ 
 test/ 
 web/ 
 router.ex 
 web.ex  
 channels/ 
 controllers/ 
 models/  
 static/  
 templates/ 
 views/

rails new awesome
awesome/ 
 README.rdoc  
 Gemfile 
 Rakefile 
 config.ru 
 app/ 
 assets/ 
 controllers/ 
 helpers/  
 mailers/ 
 models/  
 views/ 
 bin/ 
 config/ 
 db/ 
 lib/ 
 log/  
 public/ 
 test/ 
 tmp/ 
 vendor/

http://config.ru

PHOENIX CONCURRENCY

CHANNELS VS PROCESSES

▸ Channels are layers

▸ PubSub on steroids

▸ Senders and receivers can switch roles on the topic at any time

▸ Don’t even have to be Elixir/Erlang processes

▸ Could be a Rails server, JS client, Android app, mix & match, and so on

▸ Have their own routing system

▸ Fallback

▸ Ex. sockets will fall back to polling

LIVE CODING
PART FIVE

“WHAT COULD POSSIBLY GO WRONG?”

