
N E X T

Beyond SQLI to
ORM leaks

By: Arun Krishnan and Adithya Raj

N E X T

Web Security Researchers

CTF players @teambi0s

3+ Years in Web Security

Who are we?

12025

Adithya Raj Arun Krishnan

N E X T

Contents

What is an ORM

Django ORM

Conclusion

Live Demo

22025

Beyond SQLI

ORM attacks

N E X T

Beyond SQLI

2025 3

SQL Injection (SQLi) is a major
security flaw caused by directly
inserting user input into SQL
queries, allowing attackers to
manipulate database operations.

SQLI can easily be mitigated by
using prepared statements under
the hood.

There's a clear need for a
consistent, reusable way to handle
database queries that reduces
human error and enforces best
practices by default.

Writing secure queries manually
for every user input can become
repetitive and error-prone,
especially as applications scale.

Bridge Between Code and

Database

Code instead of SQL

Works across databases

ORM

2025

Prevents SQLI, via

parameterized queries

N E X T
2025 4

N E X T

This is a basic model definition in

the django ORM

Django ORM

2025

This is how you can interact with

the Article model

ORM converts the above code to

the following SQL query

5

N E X T

Django ORM
Overview of our application

2025

Article->Author->User

has a one-one

relationship.

Article->Category

has a many-many

relationship.

As you can see there are other realtions as

well

6

N E X T

Django ORM leaks

2025

Full control over the filter function

leaking data through ORM LEAKS

User injects Django ORM

filters

7

N E X T

Django ORM Leaks

2029

When the filter matches

When the filter doesn’t

match

8

N E X T

Here the filter function is called on the Article

model. How can you Leak the password from

the User model?

How do you
leak in this
case?

2025 9

N E X T

Relational Filtering Attack

2025 10

Article, Author, User are one-one related so we can traverse them using

relational filtering.

Exploiting One-One relations

Using relation filtering we can traverse the relation chain eventually reaching

the model that we want to leak and we can use the ORM filters to leak all the

data.

N E X T

Here it returns only users who has published

an article. How can you Leak users

information who hasn’t published an article?

How do you
leak in this
case?

2025 11

N E X T

Relational Filtering Attack

2025 12

Author.departments is a many-to-many field with Department, using
related_name='employees' to allow reverse lookups from Department to Author.

Exploiting Many-Many relations

Filtering Article by created_by gives us the author (e.g., Karen), and from there we
access their departments (e.g., Sales, Manager).

Using the reverse employees lookup, we get all authors in those departments (e.g.,
Karen and Jeff), then follow user to User to reach sensitive fields like passwords.

N E X T

Relational Filtering Attack

2025 13

Exploiting Many-Many relations

Consider the following scenario

Now consider there is a filtering mechanism which only allows users

which has Published as True

N E X T

Relational Filtering Attack

2025 14

Exploiting Many-Many relations

We can leak the data of non published users like this

This referes to karen and jeff because of the sales department being shared

between them

This referes to karen, jeff and sharon because of shared managers

department between sharon and jeff.

N E X T

Relational Filtering Attack

2025 15

Exploiting Many-Many relations

N E X T

Relational Filtering Attack

2025 16

Exploiting Many-Many relations

Hence we can loop over all the users because of the shared

departments between each of them and leak all the data we want

We can continue the chain to cover all the users in the model.

N E X T

Here it doesn't return any results. It only

returns an error message if an error occurs.

How can you Leak users information with this?

How do you
leak in this
case?

2025 17

N E X T

Django Supports regex filters

When the condition matches it causes a ReDOS

bug, hence increasing the RTT of our request.

Error

Based

Leaks

2025

The default regexp_time_limit for mysql is 32 ms.

If it goes above that it will trigger a Timeout

exceeded in regular expression match exception.

18

N E X T

So ReDOS can be used to trigger the exception

and Leak the information
Error

Based

Leaks

2025

If sample password is: pbkdf2341

19

Other
ORM
bugs

N E X T2025 20

 CVE 2024-53908:Potential SQL injection in
HasKey(lhs, rhs) on Oracle.

 CVE 2025-32873:Denial-of-service possibility in
strip_tags().

 CVE 2024-45231:Potential user email
enumeration via response status on password
reset.

https://www.cve.org/CVERecord?id=CVE-2024-53908
https://www.cve.org/CVERecord?id=CVE-2024-53908
https://www.cve.org/CVERecord?id=CVE-2025-32873
https://www.cve.org/CVERecord?id=CVE-2024-45231

DIVE LEMO

N E X T2025 21

Django ORM Research by

elttam

Time based attacks on

Prisma ORM by elttam

References

N E X T2025

O R

Preventing SQL Injection

in Django by Jacobian

M

22

https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plormbing-your-django-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://www.elttam.com/blog/plorming-your-primsa-orm/
https://jacobian.org/2020/may/15/preventing-sqli/
https://jacobian.org/2020/may/15/preventing-sqli/
https://jacobian.org/2020/may/15/preventing-sqli/

Email: adithyaraj2515@gmail.com
Twitter: x.com/Adithyaraj2515
Linkedin: www.linkedin.com/in/luc1f3r

For more information, please reach out to us at

We look forward to hearing from you!

Get in Touch

Email: arun.krishnan.w@gmail.com
Twitter: x.com/ArunKr1shnan
Website: https://winters0x64.xyz

Adithya Raj Arun Krishnan

