DATA IMPACT ON THE ENVIRONMENT

ERIK RIEDEL, PHD CHIEF ENGINEERING OFFICER FLAX COMPUTING

MAY 2023

revision 7

Reduce carbon footprint

focus on efficiency & results via carbon / performance

scope 1 & 2 operational carbon; scope 3 embodied carbon

Reduce cost footprint

focus on efficiency & results via cost / performance

capex, opex, people-ex

THANKS

Understanding Customer Dissatisfaction With Underutilized Distributed File Servers

Towards an Architecture for Network-Attached Storage

Erik Riedel Carnegie Mellon University http://www.cs.cmu.edu/~riedel

Shared ethernet
 Sha

Customer Dissatisfaction

• Are user complaints justified?

» Yes. Order of magnitude difference in response times

ERIK RIEDEL AND GARTH GIBSON, **"UNDERSTANDING CUSTOMER DISSATISFACTION WITH UNDERUTILIZED DISTRIBUTED FILE SERVERS"** 5TH NASA GODDARD SPACE FLIGHT CENTER CONFERENCE ON MASS STORAGE SYSTEMS AND TECHNOLOGIES. COLLEGE PARK, MD. SEPTEMBER 1996.

Environment

SCALING STORAGE

Proposal for a Common Parallel File System Programming Interface 1.0

Peter Corbett¹, Jean-Pierre Prost¹, Chris Demetriou, Garth Gibson, Erik Riedel, Jim Zelenka, Yuqun Chen², Ed Felten², Kai Li², John Hartman³, Larry Peterson³, Brian Bershad⁴, Alec Wolman⁴, Ruth Aydt⁵

> October 1996 CMU-CS-96-193

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3891

Also appears as Tech. Report CACR-130, Scalable I/O Initiative, Caltech Center for Advanced Computing Research, Pasadena, CA, November 1996.

¹ IBM T. J. Watson Research Center	² Department of Computer Science
P. O. Box 218	Princeton University
Yorktown Heights, NY 10598	Princeton, NJ 08544
³ Department of Computer Science	⁴ Computer Science & Engineering
The University of Arizona	University of Washington
Tucson, AZ 85721	Seattle, WA 98195
⁵ Department of Computer Science	

University of Illinois at Urbana-Champaign

Urbana, IL 61801

PETER CORBETT, JEAN-PIERRE PROST, CHRIS DEMETRIOU, GARTH GIBSON, ERIK RIEDEL, JIM ZELENKA, YUQUN CHEN, ED FELTEN, KAI LI, JOHN HARTMAN, LARRY PETERSON, BRIAN BERSHAD, ALEC WOLMAN, RUTH AYDT, **"PROPOSAL FOR A COMMON PARALLEL FILE SYSTEM PROGRAMMING INTERFACE"** *TECHNICAL REPORT CMU-CS-*96-193. PRESENTED AT THE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS (SUPERCOMPUTING '96). PITTSBURGH, PA. NOVEMBER 1996. GARTH GIBSON, DAVID NAGLE, KHALIL AMIRI, JEFF BUTLER, FAY CHANG, HOWARD GOBIOFF, CHARLES HARDIN, ERIK RIEDEL, DAVID ROCHBERG, JIM ZELENKA, **"A COST-EFFECTIVE, HIGH-BANDWIDTH STORAGE ARCHITECTURE"** CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS VIII). SAN JOSE, CA. OCTOBER 1998.

Figure 2: Evolution of storage architectures for untrusted networks and clients. Boxes are computers, horizontal lines are communication paths and vertical lines are internal and external interfaces. *LAN* is a local area network such as Ethernet or FDDI. *PAN* is a peripheral area network such as SCSI, Fibrechannel or IBM's ESCON. *SAN* is an emerging system area network such as ServerNet, Myrinet or perhaps Fibrechannel or Ethernet that is common across clients, servers and devices. On the far right, a *disk* is capable of functions such as seek, read, write, readahead, and simple caching. The *object store* binds blocks into variable-length objects and manages the layout of these objects in the storage space offered by the device(s). The *file manager* provides naming, directory hierarchies, consistency, access control, and concurrency control. In NASD, storage management is done by recursion on the object interface on the SAN.

ERIK RIEDEL, GARTH GIBSON, CHRISTOS FALOUTSOS, "ACTIVE STORAGE FOR LARGE-SCALE DATA MINING AND MULTIMEDIA" 24TH INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES (VLDB '98). NEW YORK, NY. AUGUST 1998.

Active Storage For Large-Scale Data Mining and Multimedia

Erik Riedel Garth Gibson, Christos Faloutsos

Parallel Data Laboratory, Center for Automated Learning and Discovery Carnegie Mellon University www.pdl.cs.cmu.edu/Active

e Parallel Data Laboratory Center for Automated Learning and Discovery

http://www.pdl.cs.cmu.edu/Active

Active Disks for Data Mining

OBJECTS

MIKE MESNIER, GREGORY R. GANGER, ERIK RIEDEL "OBJECT-BASED STORAGE" IEEE COMMUNICATIONS MAGAZINE 41 (8). AUGUST 2003.

Figure 3. Offloading of storage management from the file system.

OSD Commands

LIST – recovery of objects

© 2007 Storage Networking Industry Association. All Rights Reserved.

OSD Architecture and Systems

OSD-1 r10, as ratified

EDUCATION

- **Basic Protocol** Security • – READ Authorization – each request very basic – WRITE Integrity – for args & data – CREATE - SET KEY shared space mgmt REMOVE – SET MASTER KEY secrets - GET ATTR attributes Groups – SET ATTR timestamps CREATE COLLECTION vendor-specific REMOVE COLLECTION opaque LIST COLLECTION Specialized ٠ shared FLUSH COLLECTION – FORMAT OSD Management APPEND – write w/o offset CREATE PARTITION CREATE & WRITE – save msg FLUSH – force to media REMOVE PARTITION FLUSH OSD – device-wide
 - FLUSH PARTITION
 - PERFORM SCSI COMMAND
 - PERFORM TASK MGMT

10

Object-Based Storage Devices Commands (OSD)

Object-Based Storage Device Commands (OSD)

{Date: 2004/07/30, Rev: 10, Status: Published, BSR Number: INCITS 400}

PDF File: osd-r10.pdf (1296556 bytes)

The Object-Based Storage Device Commands (OSD) defines a command set that stores data objects instead of blocks of data. The purpose of this abstraction is to assign to the storage device more responsibility for managing the location of the data.

The above document is a final T10 committee working draft. Only T10 members are permitted to access this document. Other people may purchase the approved standard, ANSI INCITS 400-2004.

(12)	United	States	Patent
	Messinger	et al.	

(54) OBJECT-BASED DATA STORAGE DEVICE

- (75) Inventors: Daniel Edward Messinger, Waconia, MN (US); Wilson M. Fish, Yukon, OK (US); Sami Iren, Pittsburgh, PA (US); Erik Riedel, Pittsburgh, PA (US)
- (73) Assignee: Seagate Technology LLC, Cupertino, CA (US)
- Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 1194 days.
- (21) Appl. No.: 11/339,991
- (22) Filed: Jan. 26, 2006

(65)**Prior Publication Data**

US 2007/0185902 A1 Aug. 9, 2007

- (51) Int. Cl. G06F 7/00 (2006.01)G06F 17/00 (2006.01)G06F 3/06 (2006.01)G06F 13/00 (2006.01)G06F 13/28 (2006.01)(52) U.S. Cl. CPC G06F 3/0644 (2013.01); G06F 3/0613 (2013.01); G06F 3/0619 (2013.01); G06F 3/0676 (2013.01)
- (58)**Field of Classification Search** None See application file for complete search history.
- (56) **References** Cited

U.S. PATENT DOCUMENTS

5,166,936	A	*	11/1992	Ewert et al 714/723
5,475,540	A	*	12/1995	Gold 360/48
5,963,937	Α	aje	10/1999	Yamasaki et al 707/4
6,128,717	Α	봐	10/2000	Harrison et al 711/202
6,601,101	B1		7/2003	Lee et al 709/227

(10) Pate (45) Date	ent N e of 1	No.: Patent	US 9,002,795 B2 : Apr. 7, 2015
6,745,285	B2	6/2004	Howard et al 711/114
6,823,398	B1	11/2004	Lee et al 710/5
6,826,613	B1	11/2004	Wang et al 79/227
6,850,969	B2	2/2005	Ladan-Mozes et al 709/213
7,096,336	B2	8/2006	Furuhashi et al.
7,124,272	B1*	10/2006	Kennedy et al 711/173
7,194,594	B2	3/2007	Asami et al.
2001/0018727	A1*	8/2001	Ando et al 711/112
2002/0078066	A1	6/2002	Robinson et al 707/104.1
2002/0095546	A1*	7/2002	Dimitri et al 711/112
2002/0159362	A1*	10/2002	Yoshimoto et al 369/53.21
2003/0088591	A1	5/2003	Fish 707/204

(Continued)

FOREIGN PATENT DOCUMENTS

2003153185 A 5/2003 2004086512 A 3/2004 (Continued)

OTHER PUBLICATIONS

Michael Borgwardt, Haruo Yokota, Treatment of Arbitrary-Size Data in Autonomous Disks, Information Processing Society of Japan, vol. 2001, No. 70, pp. 127-134.*

(Continued)

Primary Examiner — Jason Liao

JP

JP

(57)

(74) Attorney, Agent, or Firm - Westman, Champlin & Koehler, P.A.

ABSTRACT

A data storage device includes storage media with multiple media zone attributes of storage performance. The storage device includes a data channel that is connectable to a host system. The data channel receives an object from the host system that has a requested storage attribute attached to the object. The storage device comprises an object-based storage interface that couples between the data channel and the storage media. The object-based storage interface schedules the object for storage in a selected zone of the multiple media zones based on the attributes and requested attributes.

8 Claims, 5 Drawing Sheets

M. Mesnier

* cited by e

Primary Ex

(74) Attor

(12) United States Patent

MEDIA CHARACTERISTICS (75) Inventor: Erik Riedel, Pittsburgh, PA (US) (73) Assignee: Scagate Technology LLC, Scotts Valley,

Jun. 30, 2006

US 2008/0002272 A1 Jap 3 2008

58) Field of Classification Search .

(54) OBJECT BASED STORAGE DEVICE WITH STORAGE MEDIUM HAVING VARYING

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 871 days.

Prior Publication Data

(2006.01)

See application file for complete search history.

References Cited

..... 360/55; 360/41

Non

Riedel

(21) Appl. No.: 11/480,049

(22) Filed:

(51) Int. Cl. G11B 5/09

(52) U.S. Cl.

(10) Pater (45) Date	nt No.: of Pat	ent:	7,826,161 B2 Nov. 2, 2010	} -			
6,065,0 6,195,2 6,298,4 6,321,3 6,571,3 6,611,3 6,631,4						US0079	58331B2
6,765,7 6,839,8 2002/00392 2002/01721 2003/00885 2003/01878	(12)	Unite Iren et a	d States	s Patent	(10) Patent 1 (45) Date of	No.: Patent	US 7,958,331 B2 :: Jun. 7, 2011
2003/01878 2003/01878 2003/01878 2005/00783 2006/01039	(54)	STORAG ADDRES	E DEVICE WI S SPACE	TH OPPORTUNISTIC	5,802,599 A 6,449,689 B1* 6,954,876 B2	9/1998 9/2002 10/2005	Cabrera et al
M. Mesnier e Magazine, At	(75)	Inventors:	Sami Iren, Pit Riedel, Pittsbu	tsburgh, PA (US); Erik ırgh, PA (US)	6,981,119 B1 2002/0191692 A1 2005/0086567 A1* 2005/0257023 A1*	12/2005 12/2002 4/2005 11/2005	Lepak et al
cited by e.	(73)	Assignee:	Seagate Techr CA (US)	ology LLC, Scotts Valley,	2006/0005069 A1 2006/0010151 A1* 2007/0174582 A1*	1/2006 1/2006 7/2007	Gaertner
74) Allorn Benjamin T Raspanti, Ll	(*)	Notice:	Subject to any patent is exter U.S.C. 154(b)	disclaimer, the term of this aded or adjusted under 35 by 983 days.	OT Hai Huang, Wanda H Replication in Free Di	HER PU ung and K sk Space fi	BLICATIONS ang G. Shin, "FS2: Dynamic Data or Improving Disk Performance and
	(21)	Appl. No.:	11/638,614		Energy Consumption,	2005, 14	pages.
	(22)	Filed:	Dec. 13, 2006		* cited by examiner		
	(65)	US 2008/0	Prior Publi 0148004 A1	cation Data Jun. 19, 2008	Primary Examiner (74) Attorney, Ager	Hashe	m Farrokh 11 — Alan G. Rego; Westman,

Champlin & Kelly, P.A

OSD Systems – 2007

A variety of Object-based Storage Devices being built today

- Disk array/server subsystem -
- E.g. LLNL units with Lustre 1000

- Smart disk for objects
- E.g. Panasas storage blade

- Highly integrated, single disk
- E.g. prototype Seagate OSD

- Orchestrates system activity
- Balances objects across OSDs
- Called clustered MDS in Lustre
- Called Mgmt Blade by Panasas
- Called ST server cluster by IBM

OSD Architecture and Systems

© 2007 Storage Networking Industry Association. All Rights Reserved.

- Scalable Network
- Connectivity among clients, managers, and devices
- Shelf-based GigE (Panasas) -
- Specialized cluster-wide high-performance network (Lustre)
- Storage network (IBM)

CLOUDS

ERIK RIEDEL **"EFFICIENT & CONVENIENT - HOW TO BUILD BIG STORAGE AS A CLOUD"**, *MSST CONFERENCE* PACIFIC GROVE, CA. APRIL 2012.

Efficient & Convenient

BIGDAI

How To Build Big Storage As A Cloud

Erik Riedel, PhD Technology & Architecture Cloud Infrastructure Group EMC

Cloud is not about technology change, it's about organizational change

(not new to HPC users)

The Big Disconnect

How can it be I am so **powerful** as a consumer And so LAME as an employee!!??

How disruptive do you think Consumer IT will be to Enterprise IT?

From September 2010, SNIA CloudBurst keynote by Geoffrey Moore

6

SCALABLE STORAGE CLOUDS

\$/TB

- high capacity drives (as many as possible)
- x86 servers/controllers (as few as possible)
- SAS backplanes/cables (not too many, not too few)

\$/TB/month

SGI[°] CloudRack[™] C2

Dell

12 drives/U

Backblaze

EMC²

6 drives/U

Supermicro

11.3 drives/U

- high capacity drives (as many as possible)
- x86 servers/controllers (as few as possible)
- SAS backplanes/cables (not too many, not too few)

14.1 drives/U

EMC²

ATMOS (2008)

>1,000 CUSTOMERS >1 EXABYTE DEPLOYED

ECS (2013)

>>1,200 CUSTOMERS >1 EXABYTE DEPLOYED

OVER \$2B LIFETIME CUSTOMER REVENUE

22.7 drives/U

816x drives4x servers2x switches18x cables

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* SOSP 2003

Figure 1: GFS Architecture

Colossus under the hood: a peek into Google's scalable storage system

April 19, 2021

Dean Hildebrand Technical Director, Office of the CTO, Google Cloud Denis Serenyi Tech Lead, Google Cloud Storage

CARBON

SAP Research EPRI

VMware Hilltop F

VMware Hilltop

P VMware Hilltop Parking Garage

deroiR

1050 Arastradero Rd, Building B Yohana

Outline

Current state of affairs and industry trends

Power measurement

- storage subsystems
- idle and active modes
- power supply loading / efficiencies
- power measurement & monitoring equipment
- Green metrics and taxonomy
 - measuring green-ness
 - storage product categories
- □ ENERGY STAR[™] for Data Center Storage
 - update and overview
- □ SNIA green storage efforts
 - unplugged fests, green standards, workshops, alliances

TECHNOLOGY ADVANCES

Technology Constantly Advances

hardware, software, operations, applications, methods, methodologies Computing Technology has advanced in leaps & bounds.

Makes sense to regularly consider updates & refreshes.

Network "Appliances" Can Win Today

NASRaQ System

	RE	

Cobalt NASRaQ $1.500 \times 240 = 360,000$ 250 MHz RISC, 32 MB RAM, 2 x 10 GB disks Extra Memory (to 128 MB each) \$183 x 360= 3Com SuperStack II 3800 Switch \$7,041 x 11= 240/24 = 10 + 1 to connect those 10 Dell PowerEdge 6350 Front-End

Rack Space (estimate 4x as much as the Dells) Installation & Misc

Dell	Power	Edge	&	Power	Vault	System
------	-------	------	---	-------	-------	--------

65,880

77,451

11,512

82,840

50,000

Dell PowerVault 650F	\$40,354 x 12 =484,248
512 MB cache, dual link controller	rs, additional 630F cabinet,
20 x 9 GB FC disks, software supp	port, installation
Dell PowerEdge 6350	$11,512 \times 12 = 138,144$
500 MHz PIII, 512 MB RAM, 27	' GB disk
3Com SuperStack II 3800 Switch	n 7,041
10/100 Ethernet, Layer 3, 24-port	
Rack Space for all that	20,710

Comparison

	Dell	Cobalt
Storage	2.1 TB	4.7 TB
Spindles	240	480
Compute	6 GHz	60 GHz
Memory	12.3 GB	30.7 GB
Power	23,122 W	12,098 W
Cost	\$650,143	\$647,683

Slide from my PhD thesis defense in 1999

Today

100G networking

PB storage

THz computing

TB memory

Network "Appliances" Can Win Today

NASRaQ System

Rack Space for all that						

Comparison

Cobalt NASRaQ\$1,500 x 240 = 360,000250 MHz RISC, 32 MB RAM, 2 x 10 GB disksExtra Memory (to 128 MB each)\$183 x 360=3Com SuperStack II 3800 Switch\$7,041 x 11=240/24 = 10 + 1 to connect those 10Dell PowerEdge 6350 Front-End11,512Rack Space (estimate 4x as much as the Dells)82,840Installation & Misc50,000

2			
		Dell	Cobalt
	Storage	2.1 TB	4.7 TB
	Spindles	240	480
	Compute	6 GHz	60 GHz
Γ	Memory	12.3 GB	30.7 GB
	Power	23,122 W	12,098 W
	Cost	\$650,143	\$647,683

1999

2022

8,640 TB	storage
480	spindles
1,152 GHz	compute
122,880 GB	memory
76,800 W	power
\$650,000	cost

Dell PowerEdge & PowerVault System

Dell PowerVault 650F	\$40,354 x 12 =484,248
512 MB cache, dual link control	llers, additional 630F cabinet,
20 x 9 GB FC disks, software su	upport, installation
Dell PowerEdge 6350	$11,512 \times 12 = 138,144$
500 MHz PIII, 512 MB RAM,	27 GB disk
3Com SuperStack II 3800 Swit	tch 7,041
10/100 Ethernet, Layer 3, 24-po	ort
Rack Space for all that	20,710

CIRCULAR ECONOMY

OCP REGIONAL SUMMIT

A Global Circular IT Hardware Industry

Opportunity and Imperative

2019 OCP Regional Summit | September 26–27, 2019 RAI Exhibition & Convention Center | Amsterdam, Netherlands

OCP REGIONAL SUMMIT

Are Our Heads in the Clouds?

by 2025

Computer Power consumption forecast to exceed global energy production in 2040 (Semiconductor Ind. Assoc., 2015)

Datacenters powering AI

could account for 10% of

global electricity demands

2016 ewaste = 49m tons, growing to 57 million tons in 2021 (Inited Nations University)

CO2 emissions of digital increased by 450m tons since 2013 in OECD countries, while globally, overall CO2 emissions decreased by 250 tons over the same period.

"The future of electronics may depend on deep sea mining for minerals"

GHG of digital on track to go from 4% to 8%

2019 OCP Regional Summit | RAI Exhibition & Convention Center |

September 26-27, 2019

Amsterdam, Netherlands

Open. Together.

Data Center IT Growth is Explosive

Servers Deployed, 2019-2023:

OCP

REGIONAL

SUMMIT

65 + (14*4) = 121

2019 OCP Regional Summit | September 26–27, 2019 RAI Exhibition & Convention Center | Amsterdam, Netherlands

OCP

Open. Together.

And... Data Center IT Growth Waste is Explosive

Servers Deployed, 2019-2023:

65 + (14*4) = 121 75

→ 46M servers to be "EOL'ed" between 2019 and 2023

2019 OCP Regional Summit | September 26–27, 2019 RAI Exhibition & Convention Center | Amsterdam, Netherlands

OCP

REGIONAL

SUMMIT

25,000 to 95,000 servers / month

REDUCE

Reduce carbon footprint

focus on efficiency & results via carbon / performance

scope 1 & 2 operational carbon; scope 3 embodied carbon

Reduce cost footprint

focus on efficiency & results via cost / performance

capex, opex, people-ex

EXTEND

Why it works

3 years primary	3 years secondary	3 years tertiary
	9 year design lifetime	

Recertified hardware approach – facilitate secondary and potentially tertiary use stages for technology assets in various forms

Why it works

3 years primary	3 years secondary	3 years tertiary	
	9 year design lifetime		10-12 years

In fact, anything that keeps technology running longer will be beneficial, as long as the technology is still **useful** for something by somebody, plus **maintainable** & **serviceable**. SO use those actual criteria to evaluate ALL technology: workload performance, ongoing maintenance complexity & ongoing service costs.

How it works (2)

Step 1 - Audit

Audit systems, servers, and applications.

Step 2 - Quantify

Match per-unit, perdevice carbon inventory, performance, and capacity.

Step 3 - Optimize

Report, review, and optimize - changes might be hardware, software, operations, or design.

buy new hardware \$\$-

extend life of existing hw \$0

re-purpose existing hw \$+

add recertified hardware \$-

A WIDER LOOK

Mundano
Braffiti artist + activist

⊘ <u>PimpMyCarroca.com</u> y<u>@Mundano_sp</u> ⊘ <u>Flickr: Artetude</u>

TED Speaker

TED Fellow

Personal profile

Mundano's bold, colorful street art isn't just eye candy. His projects call attention to social, environmental and political issues, while raising chuckles from passersby.

PARTICIPATE

ABOUT

Why you should listen

Mundano is a Brazilian street artist and activist whose work makes people stop and think about the issues swirling around them everyday. In 2007, he began using his graffiti skills to paint "carroças," the wooden and metal carts used by the trash collectors throughout Brazil who haul off junk and recyclables. He painted 200 carroças and in the process made these invisible superheroes visible—not only in the streets, but also in the media. The effort led to "<u>Pimp My Carroça</u>," which made this initiative do-it-yourself, crowdfunded and global. It has brought in 170 trash collectors in cities around the world, teaming them up with 200 street artists and 800 volunteers. It is quickly becoming a movement.

Trash cart superheroes

1,085,571 views | Mundano • TEDGlobal 2014

 \checkmark Share \equiv_+ Add \heartsuit Like (32K)

Read transcript

In Brazil, "catadores" collect junk and recyclables. But while they provide a vital service that benefits all, they are nearly invisible as they roam the streets. Enter graffiti artist Mundano, a TED Fellow. In a spirited talk, he describes his project "Pimp My Carroça," which has transformed these heroic workers' carts into things of beauty and infused them with a sense of humor. It's a movement that is going global.

About the speaker

See speaker profile >

https://www.npr.org/transcripts/1048050024

Mundano's bold, colorful street art isn't just eye candy. His projects call attention to social, environmental and political issues, while raising chuckles from passersby.

\heartsuit Q \triangledown

26 likes

fermetalmacae .

A importância do catador para reciclagem se destaca... more March 7 \cdot See translation

\heartsuit \bigcirc \bigtriangledown

 \sum

C Liked by catakiapp and 360 others

pimpmycarroca Consumir de maneira consciente e reciclar somente o que é necessário. A gente apoia essa ideia... more

View all 2 comments

October 8, 2020 · See translation

 \Box

The Guardian

NPR https://www.npr.org > 2015/01/17

Pimps Cars, Brazil Pimps Trash Carts : s and Soda

Liked by **mundano_sp** and **3,973 others**

pimpmycarroca Yes: 90% of everything Brazil recycles is collected by pickers. Yes: that's a lot of work for little recognition.

One simple way to help change this scenario is voting for Cataki in the global innovation award that the app is competing for. Only 1 day left for voting to end, so go to vote.cataki.org [clickable link there in our bio] and do your part!

pimpmycarroca

LIXO

RESÍDUO

WASTE

\heartsuit \bigcirc \bigtriangledown

 \sum

•••

C Liked by catakiapp and 711 others

pimpmycarroca How many times haven't we thrown "trash in the trash" and thought we were doing something great for the planet?

But do u wanna know? Trash doesn't exist!

The word garbage perpetuates a super negative image for the pickers! The raw material of these professionals is WASTE! Remember: waste is resource. Collectors are the true environmental agents who collect our

CLOSE THE CARBON LOOP

< Sell Me Your Climate Bombs

September 25, 2020 · 6:41 PM ET

https://www.npr.org/transcripts/917060248

GET PAID TO FIGHT CLIMATE CHANGE. (HINT: LOOK AT YOUR AIR CONDITIONER....)

Your company may be sitting on some of the most potent greenhouse gases ever created: old refrigerants. These climate-warming gases often go unnoticed in chillers, air conditioning, and refrigerated systems.

We've teamed up with Intuit, the global financial platform, to help more businesses take positive steps to reduce their carbon emissions.

Ensure that your climate commitment includes monitoring these greenhouse gases – and get paid to see them destroyed or recycled.

Contact Tradewater

Get paid for your existing refrigerant, with no-cost shipping

Includes chlorofluorocarbon (CFC) refrigerants

Free recovery services of refrigerants in building chillers and other systems

Includes chlorofluorocarbon (CFC) refrigerants

Up to 50% off on recovery, reclamation, and recycling services

Includes hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbon (HFC) refrigerants

224	Lyme Mountaineer Timberlands II, LLC	3,921,355
225	Passamaquoddy Joint Tribal Council	4,513,042
226	Mescalero Apache Tribe	4,569,074
227	Green Diamond Resource Company	4,666,739
228	Tradewater, LLC	4,846,851
229	Reclamation Technologies, Inc.	5,130,894
230	EOS Climate, Inc.	5,726,319
	,	

How it Works

Tradewater is an EPA-certified organization reclaimer with the technical expertise to handle refrigerant safely and responsibly. Unlike others who purchase refrigerant, however, we do this work to fight climate change.

We first aggregate the dangerous greenhouse gases we collect. Depending on the refrigerant type, we either destroy the gases through incineration or send them through a regulated recycling process. Tim & Gabe

Tradewater Refridgerant Finders

😯 🛄					لا	(312) 291	1 9169	🖂 Email	1
refrigerant finders	What We Buy 👻	How It Works 👻	Blog	FAQs			GET A	A QUOTE	

OUR TECHNICIANS ARE EPA-CERTIFIED

We Buy Your Old Refrigerant

Get Your Free Quote

Refrigerant Finders Nationwide Buyback Program Pays Competitive Prices For Your Old Or Used Refrigerants.

Our Mail-In Program Makes It Easier Than Ever Sell Your Freon. We Offer **Free Nationwide hipping** To Ensure You Get Paid Even Quicker For Your Refrigerant.

First Name	Last Name
Phone * ?	Email Address *
(555) 555-5555	
Refrigerant Type	Refrigerant Container
Please Select ~	Please Select ~
Please Select ~ Approximate Quantity (Lbs)* ?	Please Select ✓ Zip Code ★

Security code

 \rightarrow

Enter code*

THANK YOU

OCP Experience Center - Nautilus (Stockton, CA) - hosted by Flax Computing The Sustainable Server Lab (SSL) center for open hardware i...

OCP Experience Center - Nautilus (Stockton, CA) - hosted by Flax

Solution Provider: Flax Computing Model #: OCP Experience Center - Nautilus (Stockton, CA)

Computing

OCP Experience Center - MGHPCC (Holyoke, MA) - hosted by Flax Computing

OCP Experience Center - MGHPCC (Holyoke, MA) - hosted by Flax Computing The Sustainable Server Lab (SSL) center for open hardware i...

Solution Provider: Flax Computing **Model #:** OCP Experience Center - MGHPCC (Holyoke, MA)

Efficient Computing and Energy Reduction Test Center - Hosted by Flax Computing

The Recertification for Efficient Computing and Energy Reduction Test (RECERT) design and manufacturing center hosts a range of activities related to advancing ...

Solution Provider: Flax Computing Model #: N/A

Carbon Footprint Analysis and Reduction (CFAR) Center - Hosted by Flax Computing

The Carbon Footprint Analysis and Reduction (CFAR) analysis and design process allows everyone to succinctly and accurately measure the carbon footprint of thei...

Solution Provider: Flax Computing Model #: Carbon Footprint Analysis and Reduction Center

Call to Action

- Reach out to us to get involved
- Engage us to evaluate / quantify your data center, systems, and server carbon footprints
 - <u>www.flaxcomputing.com</u>

APRIL 19-20, 2023

PRAGUE, CZ

- Evaluate your own servers, share the results with us <u>data @ flaxcomputing.com</u>
- If you have servers you don't want any more, send to: Flax Computing, Suite A2
 530 West Street
 Braintree, MA 02184
- If you want us to arrange a pickup instead, contact us at <u>servers @ flaxcomputing.com</u>

Dr. Erik Riedel at #AllThingsOpen @er1p

i build sustainable clouds; father of four; PhD; engineering leader, do-er, & mentor; practitioner of innovation & inclusion; he/him; my heart is in the work

➡ Science & Technology ③ ③ Boston, MA ⊘ linkedin.com/in/er1p
 ➡ Joined January 2008

5,001 Following 3,009 Followers

Erik Riedel, PhD, Chief Engineering Officer, Flax Computing Twitter: @er1p, @RiedelAtWork email: erik @ flaxcomputing.com

EMPOWERING OPEN.

CATCH US AGAIN SOON

OCP REGIONAL SUMMIT - PRAGUE, CZ - 19-20 APRIL 2023 KUBECON EUROPE – AMSTERDAM, NL – 18-21 APRIL 2023 MASS STORAGE SYSTEMS & TECH - SANTA CLARA - 21-23 MAY 2023 STORAGE DEVELOPER CONFERENCE – 18-21 SEPTEMBER 2023 OCP GLOBAL SUMMIT – SAN JOSE, CA – 17-19 OCTOBER 2023 KUBECON NORTH AMERICA – CHICAGO, IL – 6-9 NOVEMBER 2023