
High-performing engineering teams and the Holy Grail

Jeremy Meiss

o circleci

Director, DevRel & Community

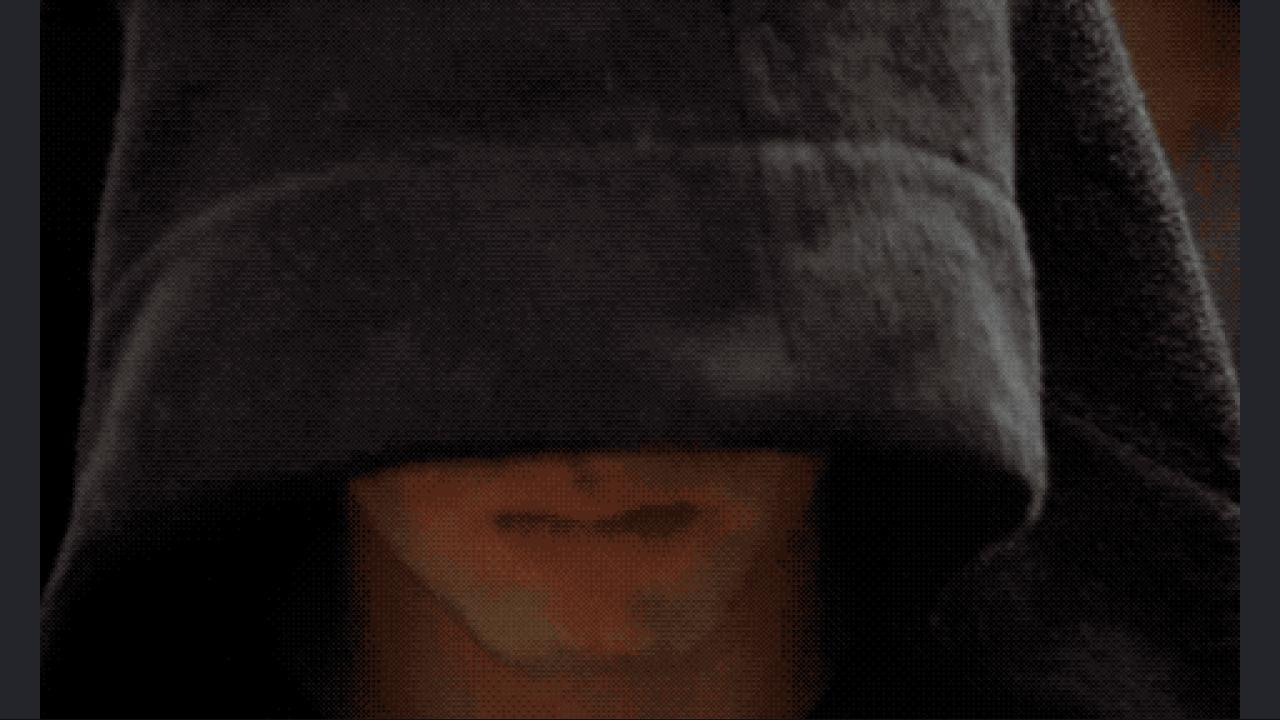
@IAmJerdog

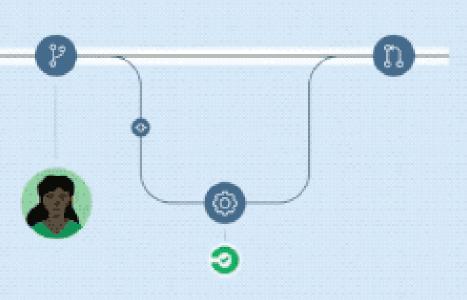
Forrester 2021 Total Economic Empact study

Using best-in-class CI/CD platforms can provide:

- \$7.8 million saved from shorter software development cycles.
- \$4.3 million recuperated in lost developer productivity.
- 50% decrease in annual infrastructure spend.
- \$1.7 million estimated value of improved code quality.

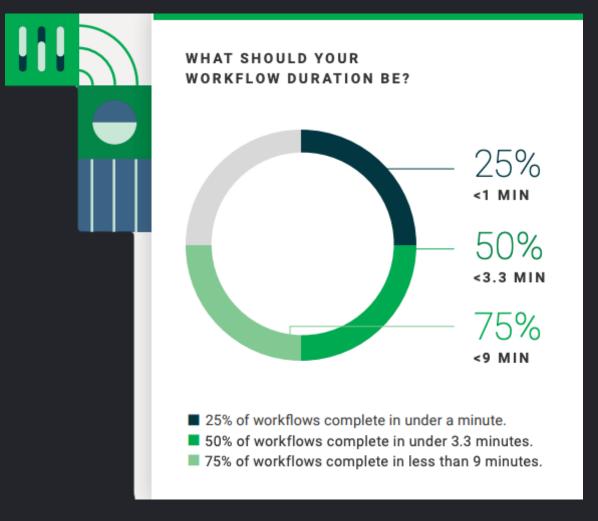
CI/CD Benchmarks for high-performing teams




So what does the data say?

Duration

the foundation of software engineering velocity, measures the average time in minutes required to move a unit of work through your pipeline


Duration Benchmark

<=10 minute builds

"a good rule of thumb is to keep your builds to no more than ten minutes. Many developers who use CI follow the practice of not moving on to the next task until their most recent checkin integrates successfully. Therefore, builds taking longer than ten minutes can interrupt their flow."

-- Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk

Duration: What the data shows

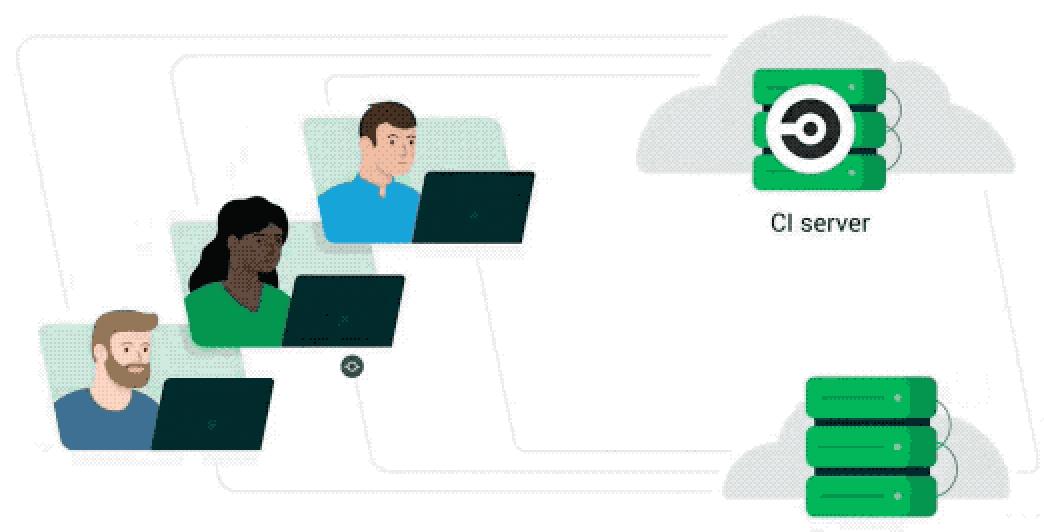
Benchmark: 5-10mins

"Why so much lower than the Duration benchmark?"

Improving test coverage

- Add unit, integration, UI, and end-to-end testing across all app layers
- Incorporate code coverage tools into pipelines to identify inadequate testing
- Include static and dynamic security scans to catch vulnerabilities
- Incorporate TDD practices by writing tests during design phase

Optimizing your pipelines


- Use **test splitting** and **parallelism** to execute multiple tests simultaneously
- Cache dependencies and other data to avoid rebuilding unchanged portions
- Use Docker images custom made for CI environments
- Choose the right machine size for your needs

Mean time to Recovery

the average time required to go from a failed build signal to a successful pipeline run

Mean time to recovery is indicative of resilience

Source control server

"A key part of doing a continuous build is that if the mainline build fails, it needs to be fixed right away. The whole point of working with CI is that you're always developing on a known stable base."

-- Fowler, Martin. "Continuous Integration." Web blog post. MartinFowler.com. 1 May 2006. Web.

<=60min MTTR on default branches

MTTR: What the data shows

Benchmark: 60mins

Two factors impacting reduced MTTR

- Economic pressures in the macro environment + rising competition in the micro environment, forcing teams to prioritize product stability and reliability over growth
- High performers increasingly rely on platform teams to achieve steadier and more resilient development pipelines with built-in recovery mechanisms.

MTTR: What the data shows

Benchmark: 60mins

Treat your default branch as the lifeblood of your project

Getting to faster recovery times

- Set up **instant alerts** for failed builds using services like Slack, Twilio, or Pagerduty.
- Write clear, informative error messages for your tests, allowing quick diagnosis
- Use **SSH into the failed build machine** to debug in the remote test environment.

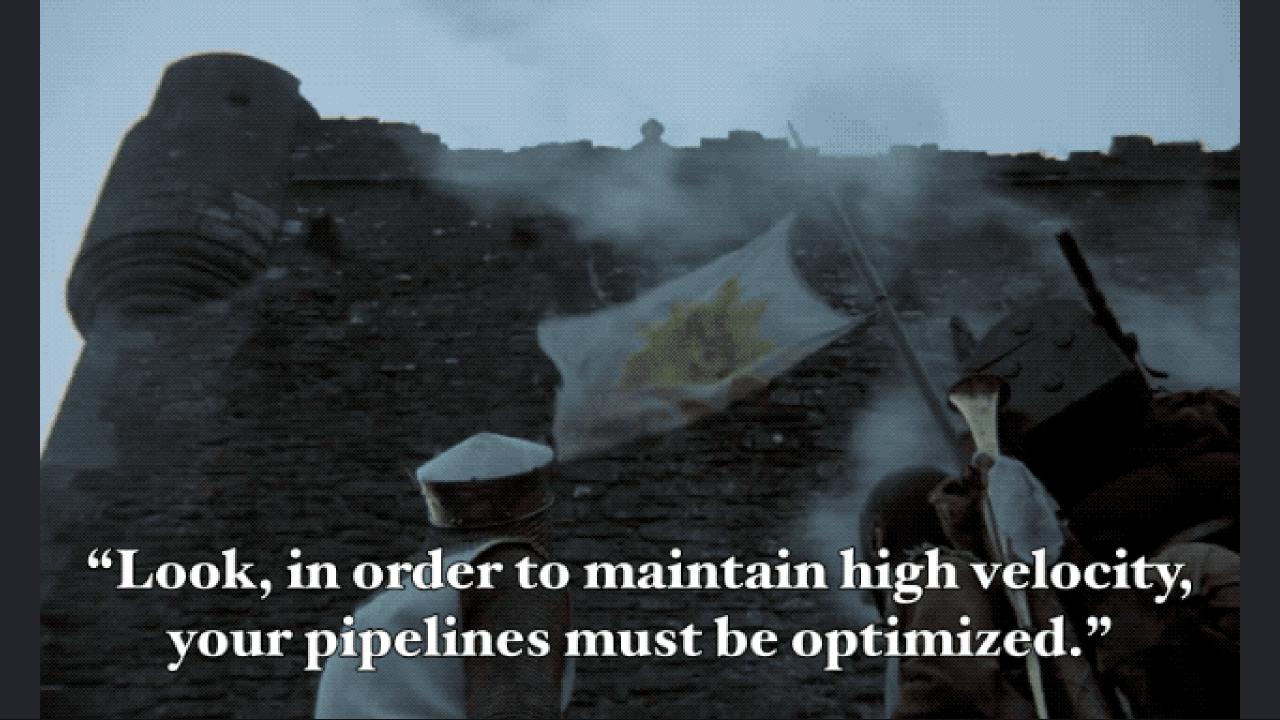
Success Rate

number of passing runs divided by the total number of runs over a period of time

Success Rate Benchmark

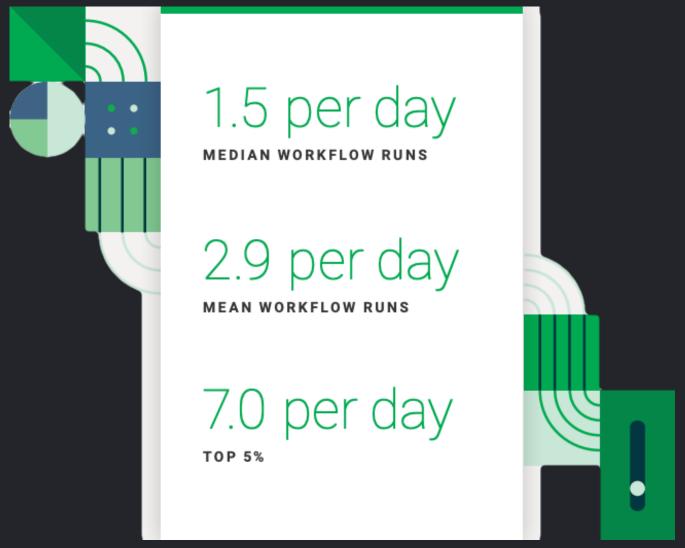
90%+ Success rate on default branches

Success rate: What the data shows



Benchmark: 90%+ on default

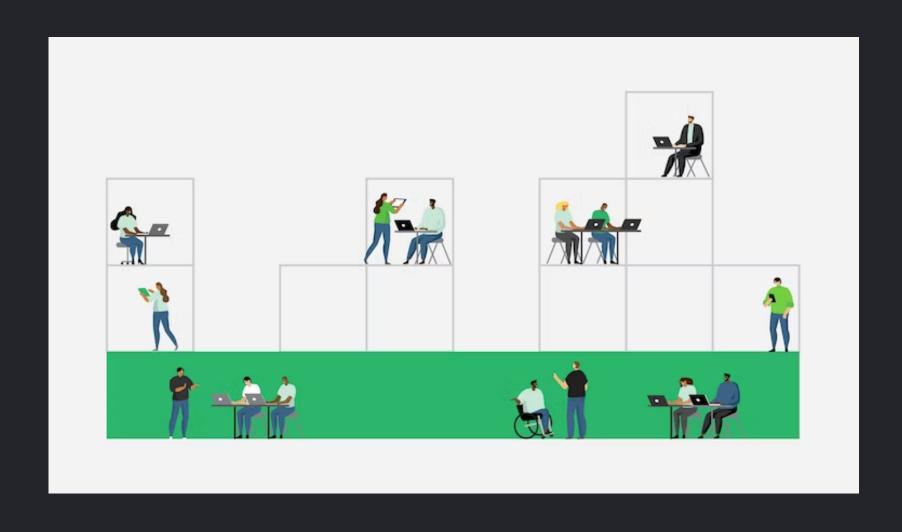
Throughput


average number of workflow runs that an organization completes on a given project per day

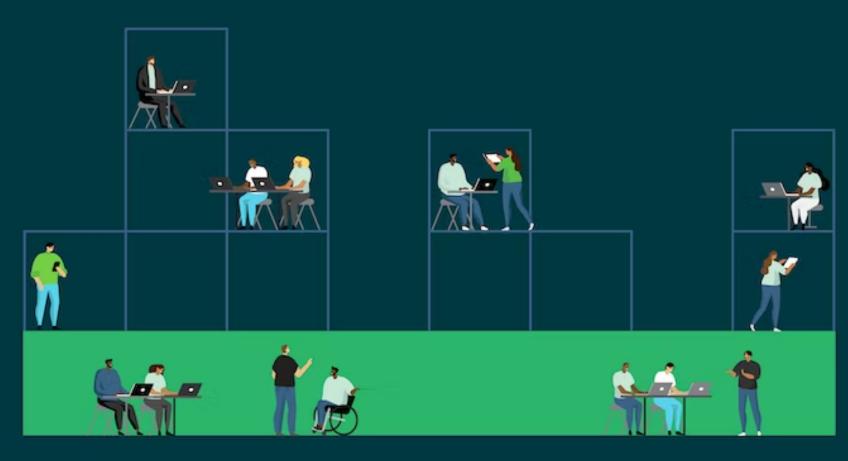
It depends.

Throughput: What the data shows

Benchmark: at the speed of your business



High-Performing Teams in 2023


Metric	2020	2022	2023	Benchmark
Duration	4.0 minutes	3.7 minutes	3.3 minutes	10 minutes
TTR	72.9 minutes	73.6 minutes	64.3 minutes	<60 minutes
Success Rate	Avg 78% on default	Avg 77% on default	Avg 77% on default	Average >90% on default
Throughput	1.46 times per day	1.43 times per day	1.52 times per day	As often as your business requires - not a function of your tooling


Platform Teams, DevOps, and you

No, DevOps is not dead

The Rise of Platform Teams

Duration

- Identify and eliminate impediments to developer velocity
- Set guardrails and enforce quality standards across projects
- Standardize test suites & CI pipeline configs, i.e. shareable config templates & policies
- Welcome failed pipelines, i.e. fast failure
- Actively monitor, streamline, and parallelize pipelines across the org

Mean time to resolve

- Ephasise value of deploy-ready, default branches
- Set up effective monitoring and alerting systems, and track recovery time
- Limit frequency and severity of broken builds with role-based AC and config policies
- Config- and Infrastructure-as-Code tools limit potential for misconfig errors
- Actively monitor, streamline, and parallelize pipelines across the org

Success rate

- With low success rates, look at MTTR and shorten recovery time first
- Set baseline success rate, then aim for continuous improvement, looking for flaky tests or gaps in test coverage
- Be mindful of patterns and influence of external factors, i.e. decline on Fridays, holidays, etc.

Throughput

- Map goals to reality of internal & external business situations, i.e. customer expectations, competitive landscape, codebase complexity, etc.
- Capture a baseline, monitor for deviations
- Alleviate as much developer cognitive load from day-to-day work

Almost done....

...but first a little more interesting data

Some Key Results We Found

• Largest productivity declines were concentrated around public holidays

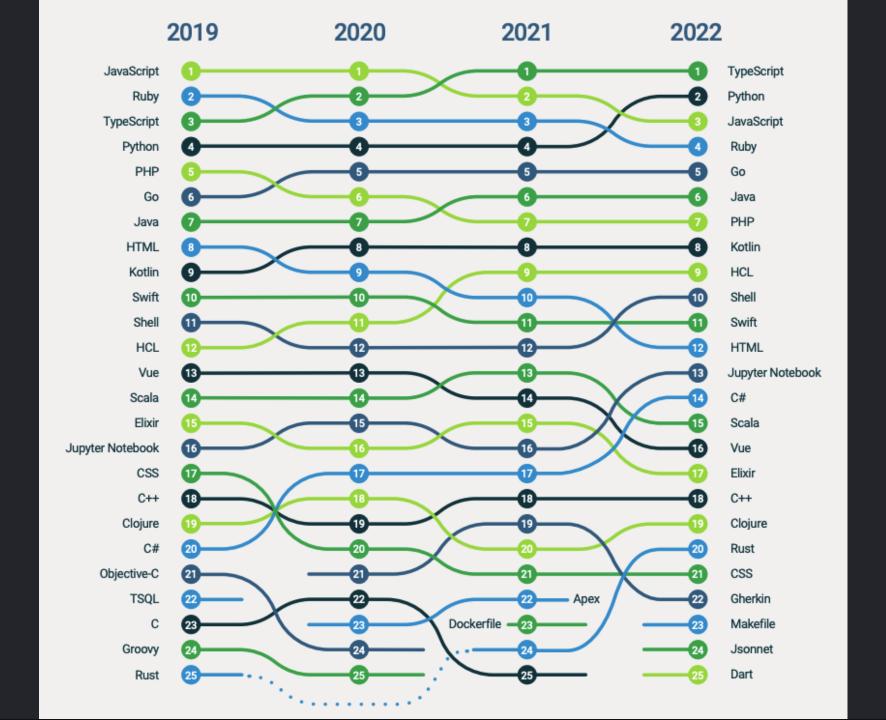
Some Key Results We Found

- Largest productivity declines were concentrated around public holidays
- Major, nationally significant events resulted in localized productivity drops

Some Key Results We Found

- Largest productivity declines were concentrated around public holidays
- Major, nationally significant events resulted in localized productivity drops
- Politics, tech & cultural events, and major shopping days had no real impact

Team size


- <= 100 contributors
 - Throughput, Success rate, Duration improve
 - Duration:
 - < 10 contributors: <2min on average</p>
 - 51 100 contributors: ~6min on average
 - 100+ contributors: ~5min on average
- > 100 contributors
 - Duration and MTTR fall
 - Throughput remains steady

Company size

- IT sector
 - Duration: 3.4min
 - Throughput: 1.56 workflows
 - MTTR: 1hr, 8min
- Automotive, Retail, Insurance sectors
 - MTTR: 4hrs +

"Surely <insert programming language> helps me achieve the "Holy Grail"!?"

	Duration	
1	Makefile	
2	LookML	
3	Shell	
4	HCL	
5	Mustache	
6	Nix	
7	SaltStack	
8	Open Policy Agent	
9	Smarty	
10	Dockerfile	
11	Jsonnet	
12	Batchfile	
13	Liquid	
14	VCL	
15	EJS	
16	Jinja	
17	PLSQL	
18	PowerShell	
19	SCSS	
20	Haml	
21	R	
22	CSS	
23	Python	
24	C#	
25	Vue	

	Duration	MTTR
1	Makefile	Gherkin
2	LookML	JavaScript
3	Shell	PHP
4	HCL	HCL
5	Mustache	Go
6	Nix	Ruby
7	SaltStack	TypeScript
8	Open Policy Agent	Perl
9	Smarty	Python
10	Dockerfile	HTML
11	Jsonnet	Java
12	Batchfile	Clojure
13	Liquid	css
14	VCL	Elixir
15	EJS	Vue
16	Jinja	Shell
17	PLSQL	Kotlin
18	PowerShell	C#
19	scss	Rust
20	Haml	Dart
21	R	Jupyter Notebook
22	CSS	Jinja
23	Python	PL/pgSQL
24	C#	С
25	Vue	C++

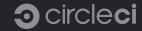
	Duration	MTTR	Success Rate
1	Makefile	Gherkin	Mustache
2	LookML	JavaScript	Perl
3	Shell	PHP	Smarty
4	HCL	HCL	Go
5	Mustache	Go	PL/pgSQL
6	Nix	Ruby	HCL
7	SaltStack	TypeScript	Vue
8	Open Policy Agent	Perl	Scala
9	Smarty	Python	Makefile
10	Dockerfile	HTML	Elixir
11	Jsonnet	Java	Shell
12	Batchfile	Clojure	HTML
13	Liquid	CSS	Jupyter Notebook
14	VCL	Elixir	Rust
15	EJS	Vue	RobotFramework
16	Jinja	Shell	C#
17	PLSQL	Kotlin	Python
18	PowerShell	C#	Clojure
19	SCSS	Rust	TypeScript
20	Haml	Dart	Ruby
21	R	Jupyter Notebook	Jinja
22	css	Jinja	С
23	Python	PL/pgSQL	PHP
24	C#	С	Kotlin
25	Vue	C++	Dockerfile

	Duration	MTTR	Success Rate	Throughput
				3.7.
1	Makefile	Gherkin	Mustache	Hack
2	LookML	JavaScript	Perl	Jsonnet
3	Shell	PHP	Smarty	Dart
4	HCL	HCL	Go	Swift
5	Mustache	Go	PL/pgSQL	Elixir
6	Nix	Ruby	HCL	Ruby
7	SaltStack	TypeScript	Vue	Mustache
8	Open Policy Agent	Perl	Scala	Jupyter Notebook
9	Smarty	Python	Makefile	TypeScript
10	Dockerfile	HTML	Elixir	Python
11	Jsonnet	Java	Shell	Elm
12	Batchfile	Clojure	HTML	Liquid
13	Liquid	CSS	Jupyter Notebook	Haskell
14	VCL	Elixir	Rust	Starlark
15	EJS	Vue	RobotFramework	PL/pgSQL
16	Jinja	Shell	C#	Jinja
17	PLSQL	Kotlin	Python	Lua
18	PowerShell	C#	Clojure	HTML
19	SCSS	Rust	TypeScript	Clojure
20	Haml	Dart	Ruby	Apex
21	R	Jupyter Notebook	Jinja	XSLT
22	CSS	Jinja	С	Perl
23	Python	PL/pgSQL	PHP	C++
24	C#	С	Kotlin	PureScript
25	Vue	C++	Dockerfile	Gherkin

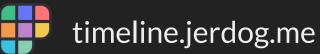
2020 Report

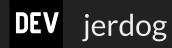
Full 2022 Report

https://circle.ci/ssd2020


https://circle.ci/ssd2022

2023 State of Software Delivery Report


circle.ci/sosdr2023



Thank You.

For feedback and swag: circle.ci/jeremy

