High-performing engineering
teams and the Holy Grail

A |

CHCF Cloud Mative L andscape Overmtaimed ? Moz ses the CHEF Trul Mag. That and the méeraciies issdecape s at Lonclio

Contreous i=tegratos & el
srtnsous =g et wary T

Calmtuze Sreaming L Weaspeg Appization Debnfos L imege Buld

App D on and Develapment

P i s

st rafi an &

‘|

| ==

E-CCER

Jeremy Meiss
O circleci
Director, DevRel & Community

¥ @lAmJerdog

So back to the tech industry....

\

YOU SEE

ot 1ol
:

HE HOLY GRAIL

ke

fu |

'-. : I
* M

Forrester 2021 Total Economic Empact study

Using best-in-class CI/CD platforms can provide:

e $7.8 million saved from shorter software development cycles.
e $4.3 million recuperated in lost developer productivity.

e 50% decrease in annual infrastructure spend.

e $1.7 million estimated value of improved code quality.

~_ THEHOLY HAND GRENADE FOR -'
* " HIGH-PERFORMING ENGINEERING TEAMS

Cl/CD Benchmarks for
high-performing teams

o & e

Duration Mean time Success Throughput

to recovery rate

So what does the
data say?’

Duration

the foundation of software engineering velocity, measures the
average time in minutes required to move a unit of work
through your pipeline

{?-ﬁ

&
And mere Wns _Hlﬂ:il Ilalali:m |

Duration Benchmark

<=10 minute builds

"a good rule of thumb is to keep your builds to no
more than ten minutes. Many developers who use CI
follow the practice of not moving on to the next task
until their most recent checkin integrates
successfully. Therefore, builds taking longer than
ten minutes can interrupt their flow."

—-- Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk

Duration: What the data shows
1,
|| SN

207

<1 MIN

00%

<3.3 MIN

70
' /0%

<9 MIN

B 25% of workflows complete in under a minute.

B 50% of workflows complete in under 3.3 minutes.
75% of workflows complete in less than 9 minutes.

Benchmark: 5-10mins

"Why so much lower than
the Duration benchmark?”

Improving test coverage

Add unit, integration, Ul, and end-to-end testing across all app layers
Incorporate code coverage tools into pipelines to identify inadequate testing
Include static and dynamic security scans to catch vulnerabilities
Incorporate TDD practices by writing tests during design phase

Optimizing your pipelines

Use test splitting and parallelism to execute multiple tests simultaneously
Cache dependencies and other data to avoid rebuilding unchanged portions
Use Docker images custom made for Cl environments

Choose the right machine size for your needs

Mean time to Recovery

the average time required to go from a failed build
signal to a successful pipeline run

Mean ti

"a

indicati

ne to recovery is

ve of resilience

] server

Source control server

"A key part of doing a continuous build is that if
the mainline build fails, it needs to be fixed right
away. The whole point of working with CI is that
you 're always developing on a known stable base.”

-— Fowler, Martin. "Continuous Integration." Web blog post. . 1 May 2006. Web.

https://martinfowler.com/articles/continuousIntegration.html#:~:text=and%20remove%20them.-,Fix%20Broken%20Builds%20Immediately,CI%20is%20that%20you%27re%20always%20developing%20on%20a%20known%20stable%20base,-.%20It%27s%20not%20a

<=60min MTTR on
default branches

MTTR: What the data shows

WHAT ARE THE BENCHMARKS
FOR MEAN TIME TO RECOVERY?

0%

<5 MIN

207

<15 MIN

00%

<64 MIN

B The fastest 5% of workflows recovered in <5 minutes.
B 25% of all workflows recaovered in =15 minutes.
50% of all workflows recovered in 64 minutes.

Benchmark: 60mins

Two tactors impacting reduced MTTR

e Economic pressures in the macro environment + rising competition in the
micro environment, forcing teams to prioritize product stability and reliability
over growth

e High performers increasingly rely on platform teams to achieve steadier and
more resilient development pipelines with built-in recovery mechanisms.

MTTR: What the data shows

WHAT ARE THE BENCHMARKS
FOR MEAN TIME TO RECOVERY?

0%

<5 MIN

207

<15 MIN

00%

<64 MIN

B The fastest 5% of workflows recovered in <5 minutes.
B 25% of all workflows recaovered in =15 minutes.
50% of all workflows recovered in 64 minutes.

Benchmark: 60mins

Treat your default branch as the
liteblood of your project

Getting to faster recovery times

e Set upinstant alerts for failed builds using services like Slack, Twilio, or Pagerduty.
e Write clear, informative error messages for your tests, allowing quick diagnosis
e Use SSH into the failed build machine to debug in the remote test environment.

Success Rate

number of passing runs divided by the total
number of runs over a period of time

NOwW g0 away...

Lot iwill
tauntyou a
second time!

Success Rate Benchmark

90%+ Success rate on
default branches

Success rate: What the data shows

Benchmark: 90%+ on default

Throughput

average number of workflow runs that an organization
completes on a given project per day

Eil. T -

“Look, in wﬁr to maintain high velocity,
your pipelines must be optimized.”

!

't depends.

Throughput: What the data shows

W O per day

Benchmark: at the speed of your business

High-Performing Teams in 2023

4.0 3.7 3.3 .

. . . 10 minutes
minutes minutes minutes

.?2'9 .?3'6 5'1'3 <60 minutes
minutes minutes minutes

Avg 78% Average >90% on
on default|on default | on default default

As often as your
1.46 times|1.43 times |1.52 times| business requires -
not a function of your
tooling

Platform Teams, DevOps, and you

No, DevOps is not dead

CNCF Cloud Mative Landscape Overwhelmed? Please see the CNCF Trail Map. That and the interactive andscape are at |.oncf.io
10

Database Streaming & Messaging Apglication Definition & knage Build Continuous Integration & Delivery ottt

g
§
a
E
]
5
£
]
i
%
H
B
2

Coordination & Service Femote Procedure

= Servioe Proxy
Di Call -

Scheduling & Orchestration

Orchestration &

Security & Compliance

chackas | CHEF|

Pravisianing

Kubernetes Certified Servioe Provider Kubemetes Training Partner Certified

The Rise of Platform Teams

https://tsh.io/blog/devops-engineer/

e DUration

PERSPECTIVE

e |dentify and eliminate impediments to developer velocity

e Set guardrails and enforce quality standards across projects

e Standardize test suites & Cl pipeline configs, i.e. shareable config templates & policies
e Welcome failed pipelines, i.e. fast failure

e Actively monitor, streamline, and parallelize pipelines across the org

weew | Vlean time to resolve

PERSPECTIVE

e Ephasise value of deploy-ready, default branches

e Set up effective monitoring and alerting systems, and track recovery time

e Limit frequency and severity of broken builds with role-based AC and config policies
e Config- and Infrastructure-as-Code tools limit potential for misconfig errors

e Actively monitor, streamline, and parallelize pipelines across the org

-
4

e SUCCESS rate

PERSPECTIVE

o With low success rates, look at MTTR and shorten recovery time first

e Set baseline success rate, then aim for continuous improvement, looking for flaky
tests or gaps in test coverage

e Be mindful of patterns and influence of external factors, i.e. decline on Fridays,
holidays, etc.

e | NFOUghPUL

PERSPECTIVE

e Map goals to reality of internal & external business situations, i.e. customer
expectations, competitive landscape, codebase complexity, etc.

e Capture a baseline, monitor for deviations
o Alleviate as much developer cognitive load from day-to-day work

Almost done...
.but first a little more interesting data

Some Key Results We Found

e |argest productivity declines were concentrated around public holidays

Some Key Results We Found

e Largest productivity declines were concentrated around public holidays
e Major, nationally significant events resulted in localized productivity drops

Some Key Results We Found

e Largest productivity declines were concentrated around public holidays
e Major, nationally significant events resulted in localized productivity drops
e Politics, tech & cultural events, and major shopping days had no real impact

Team size

e <=7100 contributors
= Throughput, Success rate, Duration improve
o Duration:

o < 10 contributors: <2min on average
o 51-100 contributors: ~6min on average
o 100+ contributors: ~5min on average

e > 100 contributors

= Duration and MTTR fall
= Throughput remains steady

Company size

e |T sector

= Duration: 3.4min
= Throughput: 1.56 workflows
= MTTR: 1hr, 8min

e Automotive, Retail, Insurance sectors
= MTTR: 4hrs +

‘Surely <insert programming language>
helps me achieve the "Holy Grail'1?”

Javascript
Ruby
TypeScript
Python
PHP

Go

Vue

Scala

Elixir
Jupyter Motebook
Css

CH
Clojure

C#
Objective-C
TS0OL

c

Groovy
Rust

2021

0o

G
©
o
G
G
1
O
©
14

0000000000Q0Q0Q00

£

Dockerfile

-

-0—

23
24

—0

TypeScript
Python
JavaScript
Ruby

Go

Java
PHP
Kotlin
HCL

Shell
Swiift
HTML
Jupyter Motebook
Ci#

Scala

Vue

Elixir

C+
Clojure
Rust

CssS
Gherkin
Makefile
Jsonnet

Dart

Duration

Makefile
LookML
Shell

HCL
Mustache
MNix
SaltStack

Open Policy Agent

L - - - I I - T 7 B - R - I

Smarty
Dockerfile
Jsonnet
Batchfile
Liquid
VCL

EJS

Jinja
PLSQL
PowerShell
SCSS
Haml

R

OO0 =] v N A W M =

Duration

Makefile
LookML
Shell

HCL
Mustache
Nix
SaltStack

Open Policy Agent

Smarty
Dockerfile
Jsonnet
Batchfile
Liquid
VCL

EJS

Jinja
PLSQL
PowerShell
SCSS5
Hamil

R

MTTR

Gherkin
JavaScript
PHP

HCL

Go

Ruby
TypeScript
Perl
Python
HTML

Java

Clojure
CS5

Elixir
Vue
Shell
Kotlin
C#
Rust
Dart

Jupyter Notebook

Jinja
PL/pgSQL
c

C++

1
2
3
4
5
6
7
8
9

10

11

12

B OO KN NN G ad cd - ad =d =l
N B W N =2 2 9 0 s v AW

Duration

Makefile
LookML
Shell

HCL
Mustache
Nix
SaltStack
Open Policy Agent
Smarty
Dockerfile
Jsonnet
Batchfile
Liquid
VCL

EJS

Jinja
PLSQL
PowerShell
SCSS5
Hamil

R

MTTR

Gherkin
JavaScript
PHP

HCL

Go

Ruby
TypeScript
Perl
Python
HTML
Java
Clojure
CS5

Elixir

Vue

Shell
Kotlin

C#

Rust

Dart
Jupyter Notebook
Jinja
PL/pgSQL
C

C++

Success Rate

Mustache
Perl
Smarty

Go
PL/pgsSQL
HCL

Vue

Scala
Makefile
Elixir

Shell
HTML
Jupyter Notebook
Rust
RobotFramework
C#
Python
Clojure
TypeScript
Ruby

Jinja

C

PHP
Kotlin

Dockerfile

1
2
3
4
5
6
7
8
9

10

11

12

B OO KN NN G ad cd - ad =d =l
N B W N =2 2 9 0 s v AW

Duration

Makefile
LookML
Shell

HCL
Mustache
Nix
SaltStack
Open Policy Agent
Smarty
Dockerfile
Jsonnet
Batchfile
Liquid
VCL

EJS

Jinja
PLSQL
PowerShell
SCSS5
Hamil

R

MTTR

Gherkin
JavaScript
PHP

HCL

Go

Ruby
TypeScript
Perl
Python
HTML
Java
Clojure
CS5

Elixir

Vue

Shell
Kotlin

C#

Rust

Dart
Jupyter Notebook
Jinja
PL/pgSQL
C

C++

Success Rate

Mustache
Perl
Smarty

Go
PL/pgsSQL
HCL

Vue

Scala
Makefile
Elixir

Shell
HTML
Jupyter Notebook
Rust
RobotFramework
C#
Python
Clojure
TypeScript
Ruby

Jinja

C

PHP
Kotlin
Dockerfile

Throughput

Hack
Jsonnet
Dart

Swift

Elixir

Ruby
Mustache
Jupyter Notebook
TypeScript
Python
Elm

Liquid
Haskell
Starlark
PL/pgSQL
Jinja

Lua

HTML
Clojure
Apex
XS5LT

Perl

C++
PureScript
Gherkin

[R] 5 P i
".....".m__&__ " o

e

ok
o)
k2 _"“"u.__ ___...-.."-.M”.._m

E o]

@lAmJerdog

@lAmJerdog

https://circle.ci/sosdr2023

Thank
You.

For feedback and swag:

E== timeline.jerdog.me
. 4 |AmJerdog

DEV jerdog

in /in/jeremymeiss

m @jerdog@hachyderm.io

http://circle.ci/jeremy

