
© Copyright 2017 Pivotal Software, Inc. All rights Reserved.

Kubernetes for n00bs

Paul Czarkowski

@pczarkowski

© Copyright 2017 Pivotal Software, Inc. All rights Reserved.

Kubernetes for n00bs

Paul Czarkowski-Golejewski

@pczarkowski

https://xkcd.com/327/

Cover w/ Image

Agenda

■ Who I Am

■ Deploying Apps

■ What is Kubernetes

■ Demo

■ Q & A

Deploying Apps

package main

...

...

func main() {

 fmt.Println("starting hello world app")

 healthHandler := health.NewHandler()

 http.Handle("/health/", healthHandler)

 http.HandleFunc("/", serve)

 http.ListenAndServe(":8080", nil)

}

...

...

- name: install ntp

 package:

 name: ntp

- name: configure ntp

 template:

 src: ntp.conf

 dest: /etc/ntp.conf

 notify: restart ntp

- name: start ntp

 service:

 name: ntp

 state: started

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 # https://vagrantcloud.com/ubuntu

 config.vm.box = "ubuntu/xenial64"

 config.vm.network "private_network", type: "dhcp"

 # Forward ports

 config.vm.network "forwarded_port", guest: 8080, host: 8080 # hello world

 config.vm.provider "virtualbox" do |v|

 v.memory = 4096

 v.cpus = 2

 end

variable "region" {
 default = "europe-west1-d" // We're going to need it in several places in this config
}

provider "google" {
 credentials = "${file("account.json")}"
 project = "my-project"
 region = "${var.region}"
}

resource "google_compute_instance" "test" {
 count = 1 // Adjust as desired
 name = "test${count.index + 1}" // yields "test1", "test2", etc. It's also the machine's name and hostname
 machine_type = "f1-micro" // smallest (CPU & RAM) available instance
 zone = "${var.region}" // yields "europe-west1-d" as setup previously. Places your VM in Europe

 disk {
 image = "debian-7-wheezy-v20160301" // the operative system (and Linux flavour) that your machine will run
 }

 network_interface {
 network = "default"
 access_config {
 // Ephemeral IP - leaving this block empty will generate a new external IP and assign it to the machine
 }
 }
}

$ curl http://my-application.com

Hello World!

package main

...

...

func main() {

 fmt.Println("starting hello world app")

 healthHandler := health.NewHandler()

 http.Handle("/health/", healthHandler)

 http.HandleFunc("/", serve)

 http.ListenAndServe(":8080", nil)

}

...

...

FROM golang:1.8

WORKDIR /go/src/app

COPY . .

RUN go-wrapper download

RUN go-wrapper build

EXPOSE 8080

ENTRYPOINT ["/hello-world"]

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 labels:

 app: hello-world

 name: hello-app

spec:

 replicas: 2

 template:

 metadata:

 labels:

 app: hello-world

 spec:

 containers:

 - image: paulczar/hello-world

 name: hello-world

$ minikube start

$ docker build -t hello-world .

$ kubectl apply -f deployment.yaml

$ curl http://localhost:8080
Hello World!

What is Kubernetes ?

What is Docker ?

Popularized Linux Containers

Originated in 2013 by a small PaaS company called DotCloud.

Provided an easy to use interface to the [already existing] Linux Containers

Linux containers are like lightweight VMs that use the built in Linux features instead of virtualizing the

hardware.

Most linux containers contain a single application rather than a whole operating system.

100s of Containers per server vs a handful of VMs.

Easy to share artifacts called Images.

Friendly to Developer and Operator workflows alike.

You tell Docker how to build a container image via a fairly simple Dockerfile which should
generally live alongside your code in your version control system.

A build/test system (ex. Jenkins, Travis, Concourse) should be used to build and tag images
based on code changes and test results and push those images to a Registry.

There are a plethora of Registries to choose from and most have a decent UI, Access
Controls, and even vuln scanning.

● Docker Registry (either public in form of Docker Hub, or privately run)
● Your Cloud Provider (most public clouds have a Registry service)
● Harbor (extends opensource registry to have enterprise features)
● Artifactory (general purpose artifact repository manager)
● Quay (one of the earliest third party registries)

What is Kubernetes ?

A container orchestration system.

Greek for “Helmsman” or “Pilot”

A Borg like platform using Docker as the execution engine originally built by a small team of Google

engineers (Joe Beda, Brendan Burns and Craig McLuckie) and Open Sourced in 2014.

GIFEE (Google Infrastructure For Everybody Else).

Production ready! (for some definition of the word production.)

Has a rapid release cycle of a new minor version every three months. (version 1.9 at writing of this)

First project donated to the Cloud Native Compute Foundation.

What is Kubernetes ?

An IaaS for Containers (CaaS)

Abstracts away your infrastructure and provides a declarative language for the user to declare their
desired state and then makes that actual state

Linux containers instead of VMs.

Applications not Operating Systems.

Provides a consistent user experience for providing Compute, Network and Storage resources and
running applications that consume them.

Extends Compute, Network and Storage resources with Controllers that create, monitor and
perform actions on them to create higher level abstractions.

Controllers are effectively a infinite loop that interacts with the
kubernetes API to ensure the actual state of a resource matches
the declared state.

#!/bin/bash

while true; do

 count=$(kubectl get pods | grep nginx | wc -l)

 if $count < 5; then

kubectl run --image=nginx nginx

 fi

 sleep 120

done

https://twitter.com/onsijoe/status/598235841635360768

How to
Get an

Kubernetes

Are you
in the

“cloud”?

yes

Which
cloud ?

GKEAKS EKS

Azure

Google

Amazon

Do you
want
help?

no

GLHF

Pivotal Container Service
…
...

https://kubernetes.io/partners

no

yes

Other

A
laptop ?

minikube

no

yes

Logical Kubernetes Architecture

API Server

Kube Scheduler

K8s Master

Controller
Manager

Etcd

Kubelet

Kube-proxy

K8s Worker

Pod
Pod

Pod

K8s Worker

Pod
Pod

Pod

K8s Worker

Pod
Pod

Pod

CNI CNI CNI

Docker

Kubelet

Kube-proxy

Docker

Kubelet

Kube-proxy

Docker

one or more application containers that are tightly coupled, sharing network and storage.

Example: a web front-end Pod that consists of an NGINX container and a PHP-FPM container with a shared
unix socket and a “init” container to transform their config files based on environment variables.

deployment a controller that ensures a set number of replicas of a Pod is running and
provides update and upgrade workflows for your Pods.

Example: cloud native Node app that scales horizontally and upgrades 2 pods at a time.

statefulset a controller that manages stateful application Deployments by providing sticky
identity for pods and strict ordering and uniqueness.

Example: Cassandra database. First pod is ‘cassandra-0’ thus all other pods in the set can be told to cluster
to ‘cassandra-0’ and it will form a ring, plus the storage will survive pod restarts.

Pods (Compute)

tracks Pods based on metadata and provides connectivity and service discovery (DNS, Env
variables) for them.

Published as

ClusterIP (default) exposes service on a cluster-internal IP.
NodePort extends ClusterIP to expose services on each node’s IP via a static port.
LoadBalancer extends NodePort to configure a cloud provider’s load balancer using the
cloud-controller-manager.

Ingress is a controller that manages an external entity to provide load balancing, SSL
termination and name-based virtual hosting to services based on a set of rules.

Service (network)

Is [effectively] a Directory, possibly with data in it, available to all containers in a Pod.

Usually Shares lifecycle of a Pod (Created when Pod is created, destroyed when Pod is
destroyed).

Can be mounted from local disk, or from a network storage device such as a EBS volume,
iscsi, NFS, etc.

Volumes (Storage)

Provides key-value pairs to be injected into a pod much like user-data is injected into a Virtual
Machine in the cloud.

Allows you to do last minute configuration of applications running on Kubernetes such as
setting a database host, or a admin password.

ConfigMaps store values as strings, Secrets store them as byte arrays (serialized as base64
encoded strings).

Secrets are [currently] not encrypted by default. This is likely to change.

Can be injected as files in a Volume, or as Environment Variables.

ConfigMaps/Secrets (user-data)

Kubernetes Manifest

apiVersion:

kind:

metadata:

spec:

Kubernetes Manifest

apiVersion: v1

kind: Service

metadata:

 name: hello-svc

spec:

 ports:

 - port: 80

 protocol: TCP

 targetPort: 8080

 selector:

 app: hello-world

 type: NodePort

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 labels:

 app: hello-world

 name: hello-app

spec:

 replicas: 2

 template:

 metadata:

 labels:

 app: hello-world

 spec:

 containers:

 - image: paulczar/hello-world

 name: hello-world

hello-app Pod

app=hello-world

hello-app Pod

app=hello-world

hello-svc Service

app=hello-world

http 80

http 8080 - load balanced

Kubernetes Manifest

https://url
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: hello-goodbye

spec:

 rules:

 - http:

 paths:

 - path: /hello

 backend:

 serviceName: hello-svc

 servicePort: 80

 - http:

 paths:

 - path: /goodbye

 backend:

 serviceName: goodbye-svc

 servicePort: 81

ingress-nginx

app=hello-world

hello-app Pod

app=hello-world

hello-svc Service

app=hello-world

http 8080

hello-app Pod

app=goodbye-world

goodbye-svc Service

app=goodbye-world

http 8080

http://url/hello http://url/goodbye

$ kubectl apply -f manifests/

deployment "hello-app" created

service "hello-svc" created

deployment "goodbye-app" created

service "goodbye-svc" created

ingress "hello-goodbye" created

$ curl -k https://$(minikube ip)/hello
Hello World!

$ curl -k https://$(minikube ip)/goodbye
Goodbye Cruel world!

apiVersion: v1

kind: ConfigMap

metadata:

 name: hello-cm

data:

 db: user:pass@host/db

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: hello-app

 labels:

 app: hello-world

...

...

 spec:

 containers:

 - image: paulczar/hello-world

 name: hello-world

 volumeMounts:

 - name: config

 mountPath: /etc/hello

 volumes:

 - name: config

 configMap:

 name: hello-cm

apiVersion: v1

kind: Service

metadata:

 name: hello-svc

 labels:

 app: hello-world

spec:

 ports:

 - port: 81

 protocol: TCP

 targetPort: 8080

 selector:

 app: hello-world

 type: NodePort

Helm is the package manager for Kubernetes

Provides tooling to template, package, share, and run Kubernetes manifests for a given
application in the form of Charts.

Helm Client a CLI that helps you develop and run Charts.

Tiller Server runs in your cluster and translates Helm Charts into Running Applications.

~ 150 community managed Helm Charts at https://hub.kubeapps.com/

 .
├── Chart.yaml
├── templates
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── NOTES.txt
│ └── service.yaml
└── values.yaml

https://hub.kubeapps.com/

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Chart.name}}-cm

data:

 db: {{ .Value.db }}

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: {{ .Chart.name}}-app

 labels:

 app: {{ .Chart.name}}

...

...

 spec:

 containers:

 - image: paulczar/hello-world

 name: hello-world

 volumeMounts:

 - name: config

 mountPath: /etc/hello

 volumes:

 - name: config

 configMap:

 name: {{ .Chart.name}}-cm

apiVersion: v1

kind: Service

metadata:

 name: {{ .Chart.name}}-svc

 labels:

 app: {{ .Chart.name}}-world

spec:

 ports:

 - port: {{ .Value.port }}

 protocol: TCP

 targetPort: 8080

 selector:

 app: {{ .Chart.name}}-world

 type: NodePort

$ helm install --name staging . \

 --set db=’user:pass@staging.mysql/dbname’

$ helm install --name production . \

 --set db=’user:pass@production.mysql/dbname’

DEMO

Just Enough Modernization for Kubernetes (JEMFORK)

I. Codebase — One codebase tracked in revision control, many deploys

II. Dependencies — Explicitly declare and isolate dependencies

III. Config — Store config in the environment

IV. Backing Services — Treat backing services as attached resources

V. Build, release, run — Strictly separate build and run stages

VI. Processes — Execute the app as one or more stateless processes

http://12factor.net/codebase
http://12factor.net/dependencies
http://12factor.net/config
http://12factor.net/backing-services
http://12factor.net/build-release-run
http://12factor.net/processes

Just Enough Modernization for Kubernetes (JEMFORK)

VII. Port binding — Export services via port binding

VIII. Concurrency — Scale out via the process model

IX. Disposability — Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity — Keep development, staging, and production as similar as possible

XI. Logs — Treat logs as event streams

XII. Admin processes — Run admin/management tasks as one-off processes

http://12factor.net/port-binding
http://12factor.net/concurrency
http://12factor.net/disposability
http://12factor.net/dev-prod-parity
http://12factor.net/logs
http://12factor.net/admin-processes

Just Enough Modernization for Kubernetes (JEMFORK)

III. Config — Store config in the environment

http://12factor.net/config

Just Enough Modernization for Kubernetes (JEMFORK)

Environment Variables

Just Enough Modernization for Kubernetes (JEMFORK)

Environment Variables

https://scoutapark.com

ingress-nginx

scout-nginx Pod

app=scout-nginx

scout-nginx Service

app=scout-nginx

http 8080

wordpress Pod

app=wordpress

wordpress Service

app=wordpress

http 8080

http://scoutapark.com/ http://scoutapark.com/blog

scout-php Service

app=scout-php

tcp 9000

mysql Service

app=mysql

mysql Pod

app=mysql

tcp 3306

scout-php Pod

app=scout-php

<INSERT DEMO HERE>

Further Reading

Next Steps … Further reading.

● Kubernetes Docs, specifically the tutorials and troubleshooting sectiong
○ https://kubernetes.io/docs/home/
○ https://kubernetes.io/docs/tutorials/kubernetes-basics/
○ https://kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/

● Writing your first Helm Chart
○ https://medium.com/@pczarkowski/writing-your-first-helm-chart-f3433344f824

● Pivotal’s Enterprise Kubernetes Offering
○ https://pivotal.io/platform/pivotal-container-service

● Kelsey Hightower’s Kubecon Keynote showing CI/CD pipeline
○ https://www.youtube.com/watch?v=07jq-5VbBVQ

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/
https://medium.com/@pczarkowski/writing-your-first-helm-chart-f3433344f824
https://pivotal.io/platform/pivotal-container-service
https://www.youtube.com/watch?v=07jq-5VbBVQ

Q & A

© Copyright 2017 Pivotal Software, Inc. All rights Reserved.

Transforming How The World Builds Software

