
@TRENTMWILLIS #JSKongress

WEAVING
WEBS F
WORKERS

@TRENTMWILLIS #JSKongress

@TRENTMWILLIS #JSKongress

Hallo JS Kongress!

@TRENTMWILLIS #JSKongress

Hallo JS Kongress!
Raise your ✋ if
you work on a web
application.

@TRENTMWILLIS #JSKongress

Cool Web App That Pays The Bills

@TRENTMWILLIS #JSKongress

Cool Web App That Pays The Bills

@TRENTMWILLIS #JSKongress

Cool Web App That Pays The Bills

@TRENTMWILLIS #JSKongress

Cool Web App That Pays The Bills

@TRENTMWILLIS #JSKongress

@TRENTMWILLIS #JSKongress

@TRENTMWILLIS #JSKongress

How do we prevent
numerous, large, and/or slow
data requests from impacting

our users?

@TRENTMWILLIS #JSKongress

Web Workers.
They help, but also complicate.

@TRENTMWILLIS #JSKongress

WEAVING
WEBS F
WORKERS

@TRENTMWILLIS #JSKongress

WEAVING
WEBS F
WORKERS

@TRENTMWILLIS #JSKongress

Sp
ide

y

@TRENTMWILLIS
 Senior UI Engineer at Netflix

@TRENTMWILLIS #JSKongress

The Web Workers API
“allows Web application authors to

spawn background workers running
scripts in parallel to their main page.”

@TRENTMWILLIS #JSKongress

new Worker('worker.js');

@TRENTMWILLIS #JSKongress

new Worker('worker.js');
new SharedWorker('worker.js');

@TRENTMWILLIS #JSKongress

new Worker('worker.js');

It’s like a <script> but loads
in a different thread!

@TRENTMWILLIS #JSKongress

Web Workers allow
“for thread-like operation with

message-passing as the
coordination mechanism.”

@TRENTMWILLIS #JSKongress

// main thread
worker;;

@TRENTMWILLIS #JSKongress

// main thread
worker.postMessage(message);;

@TRENTMWILLIS #JSKongress

// worker thread
self // WorkerGlobalScope

@TRENTMWILLIS #JSKongress

// worker thread
self.addEventListener(
 'message',
 event => {
 console.log(event.data);
 };
);

@TRENTMWILLIS #JSKongress

// worker thread
self.addEventListener(
 'message',
 event => {
 console.log(event.data);
 self.postMessage(message);
 };
);

@TRENTMWILLIS #JSKongress

// main thread
worker.addEventListener(
 ‘message',
 event => console.log(event.data)
);

Messaging is the bulk of the
Web Workers API you need!

@TRENTMWILLIS #JSKongress

// main thread
worker.terminate();

@TRENTMWILLIS #JSKongress

PROBLEMS

@TRENTMWILLIS #JSKongress

PROBLEM

Knowing when a task is
completed

@TRENTMWILLIS #JSKongress

PROBLEM

Management and coordination
of multiple workers

@TRENTMWILLIS #JSKongress

PROBLEM

Difficult to test

@TRENTMWILLIS #JSKongress

PROBLEM

No dynamic definition of
workers

@TRENTMWILLIS #JSKongress

SOLUTIONS

@TRENTMWILLIS #JSKongress

PROBLEM

Knowing when a task is
completed

@TRENTMWILLIS #JSKongress

Turn messages into Promises

PROBLEM Knowing when a task is completed

Replace one platform
feature with another!

@TRENTMWILLIS #JSKongress

PROBLEM Knowing when a task is completed
SOLUTION Turn messages into Promises

const postMessage = (worker, message) => new Promise(resolve => {
 const resolution = (event) => {
 worker.removeEventListener('message', resolution);
 resolve(event.data);
 };
 worker.addEventListener('message', resolution);
 worker.postMessage(message);
});

 postMessage

@TRENTMWILLIS #JSKongress

PROBLEM Knowing when a task is completed
SOLUTION Turn messages into Promises

postMessage(worker, data).then(response => console.log(response));postMessage(worker, data) response console.log(response)

@TRENTMWILLIS #JSKongress

PROBLEM Knowing when a task is completed
SOLUTION Turn messages into Promises

const response = await postMessage(worker, data);
console.log(response);

@TRENTMWILLIS #JSKongress

promise-worker
github.com/nolanlawson/promise-worker

PROBLEM Knowing when a task is completed
SOLUTION Turn messages into Promises

@TRENTMWILLIS #JSKongress

PROBLEM

Management and coordination
of multiple workers

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers

Use Promises (again)

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers

Expose Worker methods as
main thread functions

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers
SOLUTION Expose Worker methods as main thread functions

 backendOneWorker
 backendTwoWorker

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([
 backendOneWorker.fetch('first'),
 backendTwoWorker.fetch('second')
]);

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([
 backendOneWorker.fetch('first'),
 backendTwoWorker.fetch('second')
]);
const result = await processingWorker.process(data);
console.log(result);

@TRENTMWILLIS #JSKongress

PROBLEM Management and coordination of multiple workers
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([
 backendOne.fetch('first'),
 backendTwo.fetch('second')
]);
const result = await processing.process(data);
console.log(result);

A good Worker abstraction
looks like any other object!

@TRENTMWILLIS #JSKongress

Workerize
github.com/developit/workerize

PROBLEM Management and coordination of multiple workers
SOLUTION Expose Worker methods as main thread functions

@TRENTMWILLIS #JSKongress

PROBLEM

No dynamic definition of
workers

@TRENTMWILLIS #JSKongress

Create Workers from Blob
URLs of functions

PROBLEM No dynamic definition of workers

@TRENTMWILLIS #JSKongress

PROBLEM No dynamic definition of workers
SOLUTION Create Workers from Blob URLs of functions

const workerFromFunction = (fn) => {
 const src = `(${fn})();`;
 const blob = new Blob([src], {type: 'application/javascript'});
 const url = URL.createObjectURL(blob);
 return new Worker(url);
};

@TRENTMWILLIS #JSKongress

greenlet
github.com/developit/greenlet

PROBLEM No dynamic definition of workers
SOLUTION Create Workers from Blob URLs of functions

@TRENTMWILLIS #JSKongress

Lumen
bit.ly/netflix-lumen

@TRENTMWILLIS #JSKongress

Lumen

@TRENTMWILLIS #JSKongress

Lumen
“The majority of data operations in Lumen are
done in Web Workers. This allows Lumen to

keep the main thread free for user interactions,
such as scrolling and interacting with

individual charts, as the dashboard loads all of
its data.”

@TRENTMWILLIS #JSKongress

Worker-To-Worker
Communication

This is how we “weave” a
web of Web Workers!

@TRENTMWILLIS #JSKongress

// worker thread
const workerInWorker = new Worker('worker.js');

@TRENTMWILLIS #JSKongress

MessageChannel

@TRENTMWILLIS #JSKongress

MessageChannel
consists of 2

MessagePorts

@TRENTMWILLIS #JSKongress

// main thread
const worker1 = new Worker('worker-1.js');
const worker2 = new Worker('worker-2.js');

@TRENTMWILLIS #JSKongress

// main thread
const worker1 = new Worker('worker-1.js');
const worker2 = new Worker('worker-2.js');

const channel = new MessageChannel();

@TRENTMWILLIS #JSKongress

// main thread
const worker1 = new Worker('worker-1.js');
const worker2 = new Worker('worker-2.js');

const channel = new MessageChannel();

worker1.postMessage('MessagePort', [channel.port1]);
worker2.postMessage('MessagePort', [channel.port2]);

@TRENTMWILLIS #JSKongress

Transferable
“[A Transferable] represents an object that

can be transferred between different
execution contexts, like the main thread and

Web Workers.”

@TRENTMWILLIS #JSKongress

// worker thread
self.addEventListener('message', (event) => {
 if (event.ports.length) {
 };
});

@TRENTMWILLIS #JSKongress

// worker thread
self.addEventListener('message', (event) => {
 if (event.ports.length) {
 event.ports[0].onmessage = event => console.log(event.data);
 event.ports[0].postMessage('hello from worker 2’);
 };
});

@TRENTMWILLIS #JSKongress

const data = await Promise.all([
 backendOneWorker.fetch('first'),
 backendTwoWorker.fetch('second')
]);
const result = await processingWorker.process(data);
console.log(result);

You can do this entirely
off the main thread!

@TRENTMWILLIS #JSKongress

Non-Blocking Canvas
Graphics

@TRENTMWILLIS #JSKongress

OffscreenCanvas

@TRENTMWILLIS #JSKongress

Non-Blocking DOM
Manipulation

@TRENTMWILLIS #JSKongress

worker-dom
github.com/ampproject/worker-dom

@TRENTMWILLIS #JSKongress

Conway’s Game of Life
canvas-of-life.glitch.me

@TRENTMWILLIS #JSKongress
So janky!

@TRENTMWILLIS #JSKongress
Much better!

@TRENTMWILLIS #JSKongress

You Can Do
A LOT With

Web Workers…

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

How do we test them?

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

A Tale of Two Strategies

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

Run your testing framework
and worker in the same

thread

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

// Main thread
<script src="test-framework.js"></script>
<script src="worker.js"></script>
<script src="tests.js"></script>

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

// Main thread
<script src="test-framework.js"></script>
<script src="worker.js"></script>
<script src="tests.js"></script>

// Or, worker thread
importScripts('test-framework.js', 'worker.js');
// Your tests here...

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

That is NOT how Workers are
used.

@TRENTMWILLIS #JSKongress

PROBLEM Difficult to test

Treat your Worker as a
Function

@TRENTMWILLIS #JSKongress

test('transforms data', async (assert) => {
 const worker = new Worker ('transform.js');
 const data = [1, 2, 3];
 const result = postMessage(worker, data);
 assert.equal(result, `I'm transformed!`);
});

PROBLEM Difficult to test
SOLUTION Treat your Worker as a Function

@TRENTMWILLIS #JSKongress

Sub-Problem: How do we
mock/stub calls a Worker?

PROBLEM Difficult to test
SOLUTION Treat your Worker as a Function

@TRENTMWILLIS #JSKongress

worker-box
github.com/trentmwillis/worker-box

PROBLEM Difficult to test
SOLUTION Treat your Worker as a Function

@TRENTMWILLIS #JSKongress

canvas-of-life.glitch.me/tests

@TRENTMWILLIS #JSKongress

Web Workers are
powerful

@TRENTMWILLIS #JSKongress

Web Workers are
powerful, but avoid
using them directly

@TRENTMWILLIS #JSKongress

Web Workers are
powerful, but avoid
using them directly,
instead stand on the
shoulders of giants.

@TRENTMWILLIS #JSKongress

Web Workers are
powerful, but avoid using
them directly, instead stand
on the shoulders of giants.
There is no better time to
start than right now.

Thank you!

@TRENTMWILLIS #JSKongress

Resources
• Spider icon made by Freepik from www.flaticon.com
• Web Workers spec: www.w3.org/TR/workers/
• Promise Worker: github.com/nolanlawson/promise-worker
• Workerize: github.com/developit/workerize
• Greenlet: github.com/developit/greenlet
• Lumen: bit.ly/netflix-lumen
• Worker DOM: github.com/ampproject/worker-dom
• Game of Life Demo: canvas-of-life.glitch.me
• Worker Box: github.com/trentmwillis/worker-box

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.w3.org/TR/workers/
https://github.com/nolanlawson/promise-worker
https://github.com/developit/workerize
https://github.com/developit/greenlet
http://bit.ly/netflix-lumen
https://github.com/ampproject/worker-dom
http://canvas-of-life.glitch.me
https://github.com/trentmwillis/worker-box

