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Hallo JS Kongress! 
Raise your ✋ if 
you work on a web 
application.
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Cool Web App That Pays The Bills
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How do we prevent 
numerous, large, and/or slow 
data requests from impacting 

our users?
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Web Workers. 
They help, but also complicate.
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         Senior UI Engineer at Netflix
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The Web Workers API 
“allows Web application authors to 

spawn background workers running 
scripts in parallel to their main page.”
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new Worker('worker.js');
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new Worker('worker.js'); 
new SharedWorker('worker.js');
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new Worker('worker.js');

It’s like a <script> but loads 
in a different thread!
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Web Workers allow 
“for thread-like operation with 

message-passing as the 
coordination mechanism.”
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// main thread 
worker;;
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// main thread 
worker.postMessage(message);;
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// worker thread 
self     // WorkerGlobalScope
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// worker thread 
self.addEventListener( 
  'message', 
  event => { 
    console.log(event.data); 
  }; 
);
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// worker thread 
self.addEventListener( 
  'message', 
  event => { 
    console.log(event.data); 
    self.postMessage(message); 
  }; 
);
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// main thread 
worker.addEventListener( 
  ‘message', 
  event => console.log(event.data) 
);

Messaging is the bulk of the 
Web Workers API you need!
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// main thread 
worker.terminate();
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PROBLEMS
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PROBLEM 

Knowing when a task is 
completed 
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PROBLEM 

Management and coordination 
of multiple workers 
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PROBLEM 

Difficult to test 
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PROBLEM 

No dynamic definition of 
workers 
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PROBLEM 

Knowing when a task is 
completed 



@TRENTMWILLIS #JSKongress

Turn messages into Promises

PROBLEM Knowing when a task is completed

Replace one platform 
feature with another!
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PROBLEM Knowing when a task is completed 
SOLUTION Turn messages into Promises

const postMessage = (worker, message) => new Promise(resolve => { 
    const resolution = (event) => { 
        worker.removeEventListener('message', resolution); 
        resolve(event.data); 
    }; 
    worker.addEventListener('message', resolution); 
    worker.postMessage(message); 
});

      postMessage 
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PROBLEM Knowing when a task is completed 
SOLUTION Turn messages into Promises

postMessage(worker, data).then(response => console.log(response));postMessage(worker, data)      response    console.log(response)
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PROBLEM Knowing when a task is completed 
SOLUTION Turn messages into Promises

const response = await postMessage(worker, data); 
console.log(response);
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promise-worker 
github.com/nolanlawson/promise-worker

PROBLEM Knowing when a task is completed 
SOLUTION Turn messages into Promises
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PROBLEM 

Management and coordination 
of multiple workers 
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PROBLEM Management and coordination of multiple workers

Use Promises (again)
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PROBLEM Management and coordination of multiple workers

Expose Worker methods as 
main thread functions
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PROBLEM Management and coordination of multiple workers 
SOLUTION Expose Worker methods as main thread functions

    backendOneWorker 
    backendTwoWorker 
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PROBLEM Management and coordination of multiple workers 
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 
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PROBLEM Management and coordination of multiple workers 
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 
const result = await processingWorker.process(data); 
console.log(result);
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PROBLEM Management and coordination of multiple workers 
SOLUTION Expose Worker methods as main thread functions

const data = await Promise.all([ 
    backendOne.fetch('first'), 
    backendTwo.fetch('second') 
]); 
const result = await processing.process(data); 
console.log(result);

A good Worker abstraction 
looks like any other object!
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Workerize 
github.com/developit/workerize

PROBLEM Management and coordination of multiple workers 
SOLUTION Expose Worker methods as main thread functions
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PROBLEM 

No dynamic definition of 
workers 
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Create Workers from Blob 
URLs of functions

PROBLEM No dynamic definition of workers
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PROBLEM No dynamic definition of workers 
SOLUTION Create Workers from Blob URLs of functions

const workerFromFunction = (fn) => { 
    const src = `(${fn})();`; 
    const blob = new Blob([src], {type: 'application/javascript'}); 
    const url = URL.createObjectURL(blob); 
    return new Worker(url); 
};



@TRENTMWILLIS #JSKongress

greenlet 
github.com/developit/greenlet

PROBLEM No dynamic definition of workers 
SOLUTION Create Workers from Blob URLs of functions
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Lumen 
bit.ly/netflix-lumen
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Lumen
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Lumen 
“The majority of data operations in Lumen are 
done in Web Workers. This allows Lumen to 

keep the main thread free for user interactions, 
such as scrolling and interacting with 

individual charts, as the dashboard loads all of 
its data.”
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Worker-To-Worker 
Communication

This is how we “weave” a 
web of Web Workers!
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// worker thread 
const workerInWorker = new Worker('worker.js');
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MessageChannel
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MessageChannel 
consists of 2 

MessagePorts
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// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js');
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// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js'); 

const channel = new MessageChannel();
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// main thread 
const worker1 = new Worker('worker-1.js'); 
const worker2 = new Worker('worker-2.js'); 

const channel = new MessageChannel(); 

worker1.postMessage('MessagePort', [channel.port1]); 
worker2.postMessage('MessagePort', [channel.port2]);
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Transferable 
“[A Transferable] represents an object that 

can be transferred between different 
execution contexts, like the main thread and 

Web Workers.”
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// worker thread 
self.addEventListener('message', (event) => { 
    if (event.ports.length) { 
    }; 
});
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// worker thread 
self.addEventListener('message', (event) => { 
    if (event.ports.length) { 
        event.ports[0].onmessage = event => console.log(event.data); 
        event.ports[0].postMessage('hello from worker 2’); 
    }; 
});
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const data = await Promise.all([ 
    backendOneWorker.fetch('first'), 
    backendTwoWorker.fetch('second') 
]); 
const result = await processingWorker.process(data); 
console.log(result);

You can do this entirely 
off the main thread!
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Non-Blocking Canvas 
Graphics



@TRENTMWILLIS #JSKongress

OffscreenCanvas
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Non-Blocking DOM 
Manipulation
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worker-dom 
github.com/ampproject/worker-dom
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Conway’s Game of Life 
canvas-of-life.glitch.me
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So janky!
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Much better!
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You Can Do 
A LOT With 

Web Workers…
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PROBLEM Difficult to test

How do we test them?
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PROBLEM Difficult to test

A Tale of Two Strategies
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PROBLEM Difficult to test

Run your testing framework 
and worker in the same 

thread
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PROBLEM Difficult to test

// Main thread 
<script src="test-framework.js"></script> 
<script src="worker.js"></script> 
<script src="tests.js"></script> 
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PROBLEM Difficult to test

// Main thread 
<script src="test-framework.js"></script> 
<script src="worker.js"></script> 
<script src="tests.js"></script> 

// Or, worker thread 
importScripts('test-framework.js', 'worker.js'); 
// Your tests here...
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PROBLEM Difficult to test

That is NOT how Workers are 
used.
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PROBLEM Difficult to test

Treat your Worker as a 
Function
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test('transforms data', async (assert) => { 
    const worker = new Worker ('transform.js'); 
    const data = [1, 2, 3]; 
    const result = postMessage(worker, data); 
    assert.equal(result, `I'm transformed!`); 
});

PROBLEM Difficult to test 
SOLUTION Treat your Worker as a Function
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Sub-Problem: How do we 
mock/stub calls a Worker?

PROBLEM Difficult to test 
SOLUTION Treat your Worker as a Function
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worker-box 
github.com/trentmwillis/worker-box

PROBLEM Difficult to test 
SOLUTION Treat your Worker as a Function
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canvas-of-life.glitch.me/tests
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Web Workers are 
powerful
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Web Workers are 
powerful, but avoid 
using them directly
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Web Workers are 
powerful, but avoid 
using them directly, 
instead stand on the 
shoulders of giants.
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Web Workers are 
powerful, but avoid using 
them directly, instead stand 
on the shoulders of giants. 
There is no better time to 
start than right now.

Thank you!
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Resources 
• Spider icon made by Freepik from www.flaticon.com 
• Web Workers spec: www.w3.org/TR/workers/ 
• Promise Worker: github.com/nolanlawson/promise-worker 
• Workerize: github.com/developit/workerize 
• Greenlet: github.com/developit/greenlet 
• Lumen: bit.ly/netflix-lumen 
• Worker DOM: github.com/ampproject/worker-dom 
• Game of Life Demo: canvas-of-life.glitch.me 
• Worker Box: github.com/trentmwillis/worker-box

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.w3.org/TR/workers/
https://github.com/nolanlawson/promise-worker
https://github.com/developit/workerize
https://github.com/developit/greenlet
http://bit.ly/netflix-lumen
https://github.com/ampproject/worker-dom
http://canvas-of-life.glitch.me
https://github.com/trentmwillis/worker-box

