
X/Bluesky: @gamussa

THE CLOUD CONNECTIVITY COMPANY Kong Confidential

G A M O V

Viktor
Principal Developer Advocate | Confluent
co-author of Manning’s Kafka in Action

X/Bluesky: @gamussa

X/Bluesky: @gamussa

Slides and Video
https://speaking.gamov.io/

What is
Apache Flink?

X/Bluesky: @gamussa

What is Flink?

Apache Flink is a framework and
distributed processing engine for

stateful computations over unbounded
and bounded data streams.

X/Bluesky: @gamussa

●A stream is a sequence of events
●Business data is always a stream: bounded or unbounded
●For Flink, batch processing is just a special case in the runtime

nowpast future

bounded stream

unbounded stream

Streaming

Key Features
of Flink

X/Bluesky: @gamussa

Stream processing with Flink

Kafka

Databases
Key/Value Stores

Files

Apps

Sources

Real-time Stream Processing

Sinks

X/Bluesky: @gamussa

Real-time Stream Processing

Stream processing with Flink

Kafka

Databases
Key/Value Stores

Files

Apps

Sources Sinks

Introduction to
DataStream API

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple", "banana", "cherry", "date", "elderberry");

// Perform a transformation
DataStream<Tuple2<String, Integer>> resultStream = inputStream
 .map(value -> new Tuple2<>(value, value.length()))
 .returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple", "banana", "cherry", "date", "elderberry");

// Perform a transformation
DataStream<Tuple2<String, Integer>> resultStream = inputStream
 .map(value -> new Tuple2<>(value, value.length()))
 .returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple", "banana", "cherry", "date", "elderberry");

// Perform a transformation
DataStream<Tuple2<String, Integer>> resultStream = inputStream
 .map(value -> new Tuple2<>(value, value.length()))
 .returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple", "banana", "cherry", "date", "elderberry");

// Perform a transformation
DataStream<Tuple2<String, Integer>> resultStream = inputStream
 .map(value -> new Tuple2<>(value, value.length()))
 .returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

X/Bluesky: @gamussa

The JobGraph (or topology)

X/Bluesky: @gamussa

The JobGraph (or topology)

OPERATOR

CONNECTION

X/Bluesky: @gamussa

Stream processing

• Parallel

• Forward

• Repartition

• Rebalance

grouped by
shapeSOURCE

X/Bluesky: @gamussa

Stream processing

• Parallel

• Forward

• Repartition

• Rebalance

grouped by
shapeSOURCE

X/Bluesky: @gamussa

Stream processing

• Parallel

• Forward

• Repartition

• Rebalance

group by
colorFILTER

X/Bluesky: @gamussa

Stream processing

• Parallel

• Forward

• Repartition

• Rebalance

COUNT

1
2

3

1
2

3
4

X/Bluesky: @gamussa

Stream processing with SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

results

COUNT

WHERE color <> orange

events

X/Bluesky: @gamussa

Stream processing with SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

results

COUNT

WHERE color <> orange

events

X/Bluesky: @gamussa

Stream processing with SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

events

results

COUNT

WHERE color <> orange

X/Bluesky: @gamussa

Stream processing with SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

results

COUNT

WHERE color <> orange

events

X/Bluesky: @gamussa

Stream processing with SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

results

COUNT

WHERE color <> orange

events

events

X/Bluesky: @gamussa

Apache Flink Runtime

Low-Level
Stream Operator API

Optimizer / Planner

SQL API

DataStream API

Flink’s APIs

Table API

X/Bluesky: @gamussa

Flink’s APIs: mix & match

Process Functions

DataStream API

Flink SQL

Table API

Le
ve

l o
f a

bs
tr

ac
ti

on

Low level / expressive

Easy to use / declarative
● Code Generation
● Efficient data types
● Cost-based optimizer
● Highly efficient operator implementations

(joins, aggregations, deduplications, …)
→ Easy to write efficient code with low
effort

● Custom data types
● Raw, low level access to state, time

→ A lot of potential to make mistakes :)

● Ready-made operators for Windowing: sliding,
tumbling, session. Late event handling.

● CEP / Async IO operators
● Sources / Sinks / Flink Connectors

State
Management

X/Bluesky: @gamussa

X/Bluesky: @gamussa

Stateful stream processing with Flink SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

events

results

COUNT

WHERE color <> orange

X/Bluesky: @gamussa

Stateful stream processing with Flink SQL

INSERT INTO results
SELECT color, COUNT(*)
FROM events
WHERE color !<> orange
GROUP BY color;

GROUP BY color

events

results

COUNT

WHERE color <> orange● Filtering is stateless

X/Bluesky: @gamussa

Stateful stream processing with FlinkSQL

● Counting requires state GROUP BY color

events

results

COUNT

WHERE color <> orange

X/Bluesky: @gamussa

State

• Local

• Fast

• Fault tolerant

Stored on the heap or
on disk using RocksDB
(a KV store)

Distributed, reliable
storage such as S3 or
HDFS

X/Bluesky: @gamussa

Streaming

A sequence of events.

Unfamiliar to many
developers, but
ultimately
straightforward.

Watermarks indicate
how much progress the
time in the stream has
made.

Transparent to
application developers,
enables correctness and
operations.

State snapshots for
recovery

Delightfully simple
● local
● key/value
● single-threaded

State Event time and
watermarks

Summary

As Always
Have a Nice Day…

X/Bluesky: @gamussa

