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1 1 ? CONFLUENT
What is Flink~ @ e .

Apache Flink is a framework and
distributed processing engine for
stateful computations over unbounded
and bounded data streams.
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Streaming

unbounded stream

bounded stream
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past now future

e A stream is a sequence of events
e Business data is always a stream: bounded or unbounded
e For Flink, batch processing is just a special case in the runtime
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// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple"”, "banana", "cherry", "date", "elderberry");

// Perform a transformation

DataStream<Tuple2<String, Integer>> resultStream = inputStream
.map(value -> new Tuple2<>(value, value.length()))
.returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink
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The JobGraph (or topology)
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The JobGraph (or topology)
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Stream processing with SQL Developer

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

results

GROUP BY color;

WHERE color <> orange
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Stream processing with SQL Developer
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INSERT INTO results
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Stream processing with SQL Developer

events COUNT

O

INSERT INTO results results

SELECT color, COUNT(*) A
FROM events GROUP BY gQlor

WHERE color < orange

GROUP BY color;

WHERE color <> orange
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Stream processing with SQL

Developer
events COUNT
INSERT INTO results results
SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange
GROUP BY color;

O

events  \WHERE color <> orange
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Flink's APls

Developer

SQL API Table API

DataStream API Optimizer / Planner

Low-Level
Stream Operator API

Apache Flink Runtime
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Flink's APIs: mix & match

Easy to use /declarative

A Flink SQL

Table API

Code Generation

Efficient data types

Cost-based optimizer

Highly efficient operator implementations
(Joins, aggregations, deduplications, ...)

» Easy to write efficient code with low
effort

DataStream API

Ready-made operators for Windowing: sliding,
tumbling, session. Late event handling.

CEP / Async IO operators

Sources / Sinks / Flink Connectors

Process Functions

Level of abstraction

Low level / expressive

Custom data types
Raw, low level access to state, time
» A lot of potential to make mistakes :)
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Stateful stream processing with Flink SQL

Developer
events COUNT
INSERT INTO results results
SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange
GROUP BY color;

O

WHERE color <> orange

X/Bluesky: @gamussa



Stateful stream processing with Flink SQL e e

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

GROUP BY color;
e Filtering is stateless WHERE color <> orange

results
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Stateful stream processing with FlinkSQL @ e e
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State

- Local
- Fast

- Fault tolerant

Flink node
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remote backup
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Stored on the heap or
on disk using RocksDB
(a KV store)

Distributed, reliable

storage such as S3 or
HDFS



Summary

< =

Streaming State

A sequence of events. Delightfully simple

e |ocal
Unfamiliar to many e key/value
developers, but e single-threaded
ultimately

straightforward.

Event time and
watermarks

Watermarks indicate
how much progress the
time in the stream has
made.
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State snapshots for
recovery

Transparent to
application developers,
enables correctness and
operations.






As Always
Have a Nice Day...
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