=y

=

Z \

“Stream Processing As
You've Never Seen

\ 1 Before (Seriously)

* Apache Flink for Java Developers

\ ApacheFllnk R

/

Viktor

GAMOYV

Principal Developer Advocate | Confluent
co-author of Manning's Kafka in Action

X/Bluesky: @gamussa

Slides and Video

https://speaking.gamov.io/

1 1 ? CONFLUENT
What is Flink~ @ e .

Apache Flink is a framework and
distributed processing engine for
stateful computations over unbounded
and bounded data streams.

X/Bluesky: @gamussa

Streaming

unbounded stream

bounded stream

[
|
|
|
\

past now future

e A stream is a sequence of events
e Business data is always a stream: bounded or unbounded
e For Flink, batch processing is just a special case in the runtime

X/Bluesky: @gamussa

CONFLUENT

Developer

Key Feqtdfgs ‘i‘
A oEF Ilrfk" -

._4_-» -”' o=]

Stream processing with Flink

Developer

L]

Files % Real-time Stream Processing

Kafka %

Sinks

Sources

Databases
Key/Value Stores

X/Bluesky: @gamussa

Stream processing with Flink Developer

L]

Files % Real-time Stream Processing

%
.—}‘—}‘ < Sinks
=

Kafka

Sources

Databases
Key/Value Stores

X/Bluesky: @gamussa

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple"”, "banana", "cherry", "date", "elderberry");

// Perform a transformation

DataStream<Tuple2<String, Integer>> resultStream = inputStream
.map(value -> new Tuple2<>(value, value.length()))
.returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple”, "banana", "cherry", "date", "elderberry");

// Perform a transformation

DataStream<Tuple2<String, Integer>> resultStream = inputStream
.map(value -> new Tuple2<>(value, value.length()))
.returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job");

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple"”, "banana", "cherry", "date", "elderberry");

// Perform a transformation

DataStream<Tuple2<String, Integer>> resultStream = inputStream
.map(value -> new Tuple2<>(value, value.length()))
.returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console

@gamussa | @confluentinc | @apacheflink

// Set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// Create a DataStream from some elements
DataStream<String> inputStream = env.fromData("apple", "banana", "cherry", "date", "elderberry");

// Perform a transformation

DataStream<Tuple2<String, Integer>> resultStream = inputStream
.map(value -> new Tuple2<>(value, value.length()))
.returns(Types.TUPLE(Types.STRING, Types.INT));

// Print the results to the console
resultStream.print();

// Execute the Flink job
env.execute("Simple Flink Job™);

@gamussa | @confluentinc | @apacheflink

The JobGraph (or topology)

0—0—0

X/Bluesky: @gamussa

CONFLUENT
Developer

The JobGraph (or topology)

CONNECTION

0—0—0

OPERATOR

X/Bluesky: @gamussa

Developer

Stream processing

Developer

ane
O -

grouped by
shape

>
O

Parallel
Forward

SOURCE
Repartition

Rebalance

X/Bluesky: @gamussa

Stream processing

Developer

O--»‘

grouped by
shape

O—+—0

Parallel
Forward

SOURCE
Repartition

Rebalance

X/Bluesky: @gamussa

Stream processing

Developer

O——0 O

Parallel
Forward
FILTER 9r‘c’:lgrby
Repartition
Rebalance

O—0 O

X/Bluesky: @gamussa

Stream processing

Developer

O]

Parallel

Forward

COUNT
V‘
2
3

Repartition

Rebalance

X/Bluesky: @gamussa

Stream processing with SQL Developer

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

results

GROUP BY color;

WHERE color <> orange

X/Bluesky: @gamussa

Stream processing with SQL Developer

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

results

GROUP BY color;

WHERE color <> orange

X/Bluesky: @gamussa

Stream processing with SQL Developer

events COUNT

O

INSERT INTO results results

SELECT color, COUNT(*) A
FROM events GROUP BY gQlor

WHERE color < orange

GROUP BY color;

WHERE color <> orange

X/Bluesky: @gamussa

CONFLUENT

Stream processing with SQL Developer

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

results

GROUP BY color;

WHERE color <> orange

X/Bluesky: @gamussa

Stream processing with SQL

Developer
events COUNT
INSERT INTO results results
SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange
GROUP BY color;

O

events \WHERE color <> orange

X/Bluesky: @gamussa

Flink's APls

Developer

SQL API Table API

DataStream API Optimizer / Planner

Low-Level
Stream Operator API

Apache Flink Runtime

X/Bluesky: @gamussa

Flink's APIs: mix & match

Easy to use /declarative

A Flink SQL

Table API

Code Generation

Efficient data types

Cost-based optimizer

Highly efficient operator implementations
(Joins, aggregations, deduplications, ...)

» Easy to write efficient code with low
effort

DataStream API

Ready-made operators for Windowing: sliding,
tumbling, session. Late event handling.

CEP / Async IO operators

Sources / Sinks / Flink Connectors

Process Functions

Level of abstraction

Low level / expressive

Custom data types
Raw, low level access to state, time
» A lot of potential to make mistakes :)

X/Bluesky: @gamussa

CONFLUENT

Developer

CONFLUENT

Developer
Flink Cluster
. e — —_ — = =
i: Job Mamgef
f I——— R
m / J.M &MIU ccﬁm
T Task Manxéer 1 Task i\bnager b} Task Mc\no;ger 3 e
1\
H
|
Task Slet Task Slot Task Slot Task Slot Task Slot Task Slot
Task Slot 1 S ‘s ITasl:sldtll . . Task Slot 1 ‘a .
4 ==
N\ _— |
L =
x Sinks v
Kofka Fle Custom B %
Topic System Source N\ © Kafka 3 HDFs -
QL0

X/Bluesky: @gamussa

Stateful stream processing with Flink SQL

Developer
events COUNT
INSERT INTO results results
SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange
GROUP BY color;

O

WHERE color <> orange

X/Bluesky: @gamussa

Stateful stream processing with Flink SQL e e

events COUNT

INSERT INTO results

SELECT color, COUNT(*) A
FROM events GROUP BY Rlor

WHERE color < orange

GROUP BY color;
e Filtering is stateless WHERE color <> orange

results

X/Bluesky: @gamussa

Stateful stream processing with FlinkSQL @ e e

events COUNT

O

e Counting requires state GROUP BY

O

results

O

lor

WHERE color <> orange

X/Bluesky: @gamussa

State

- Local
- Fast

- Fault tolerant

Flink node

=

local state
.

'
Y

B

remote backup

X/Bluesky: @gamussa

CONFLUENT

Developer

Stored on the heap or
on disk using RocksDB
(a KV store)

Distributed, reliable

storage such as S3 or
HDFS

Summary

< =

Streaming State

A sequence of events. Delightfully simple

e |ocal
Unfamiliar to many e key/value
developers, but e single-threaded
ultimately

straightforward.

Event time and
watermarks

Watermarks indicate
how much progress the
time in the stream has
made.

X/Bluesky: @gamussa

CONFLUENT

Developer

State snapshots for
recovery

Transparent to
application developers,
enables correctness and
operations.

As Always
Have a Nice Day...

X/Bluesky: @gamussa

CONFLUENT
Developer

